分析・活用の成果は現場で生まれる データ分析講座(その145)

更新日

投稿日

データ分析

◆ データ分析・活用の成果は現場で生まれる

 データ分析・活用の成果は、どこで生まれるでしょうか?答えは「現場」です。データ分析そのものからは何も生まれません。これを意外と忘れがちです。

 例えば……

  • 「見える化」さえすれば
  • 「データ分析」さえすれば
  • 「予測モデル構築」さえすれば
  • 「BIやCRMなどのデータ分析・活用基盤を整備」さえすれば
  • 「AI(人工知能)」さえ導入すれば

 ……とっても嬉しい何かが起こるに違いない。このように考えている方に出会います。多くの場合、嬉しいビジネス成果を手にすることはあまりないことでしょう。今回は「データ分析・活用の成果は現場で生まれるという当たり前の事実」というお話しをします。

 

1、データ分析:Input → Output → Outcome

 「データ分析・活用の流れ」を「Input → Output → Outcome」と単純化して考えてみます。「Input」とは、蓄積されたデータや、何かしらの情報です。この「Input」を使いデータ分析などを実施し、インフォメーションをインテリジェンス化します。「Output」とは、データ分析した「分析結果」などです。適切なデータ分析などを実施できれいれば、それはインテリジェンスです。「Outcome」とは、その分析結果を現場で活用して得られた「成果」です。

(1) インフォメーションとインテリジェンス

 インフォメーションとインテリジェンスというワードが登場したので、簡単に補足します。データには、アクションに直接結びつけられるかどうかで2つの状態があります。

  • インフォメーション
  • インテリジェンス

 どちらも日本語では情報と訳されます。しかし、ビジネスでのデータ分析・活用上は大きく異なります。非常にざっくり言うと、次のようになります。

  • インフォメーションは見ただけではアクションを起こすことが「できない」データ
  • インテリジェンスは見ただけでアクションを起こすことが「できる」データ

 このことは、データをビジネスで活用する上で、強く意識しておいた方が良いでしょう。

(2) データ分析の価値は、「Outcome」(ビジネス成果)で評価される

 データ分析の価値は「Input → Output」で評価することはできません。単なる分析結果に過ぎないからです。その分析結果を使い、どのような価値を生み出したのかは「Output」の先の「Outcome」で分かります。

 先ほど述べましたが「Outcome」は分析結果を現場で活用し得られた「成果」です。要は「Input → Output」のデータ分析そのものの価値は「Outcome」(ビジネス成果)で評価されます。その評価が金額換算できれば「Input → Output」のデータ分析そのものの価値評価を金額で示すことができるようになります。

(3) Outcome(ビジネス成果)はどこで生まれるのか?

 ところで、Outcome(ビジネス成果)はどこで生まれるのでしょうか?このOutcome(ビジネス成果)は、「データ分析を活用する『現場』」で生まれます。この「データ分析を活用する『現場』」は、組織の末端だけではありません。例えば、データ分析を活用する現場が「経営の現場」ならば、経営者向けのデータ分析になります。

 

2、データ分析:忘れられる活用現場

 データ分析というワードから、どうしても「データ」や「分析技術」に目が行きがちです。しかし、意識すべきは「データ分析を活用する『現場』」です。この当然のことが、データをこねくり回していると、忘れてしまうことがあります。

 忘れているというよりも、「データ分析を活用する『現場』」のことが頭の端に追いやられ、データと格闘することがメインとなることも少なくありません。

(1) 活用現場を強烈に意識したデータ分析

 現場で活用しにくい何かが生み出され、結果的にOutcome(ビジネス成果)が生まれません。「成果のでる分析」ではなく「成果のでない分析」をしてしまうことがあります。注意...

データ分析

◆ データ分析・活用の成果は現場で生まれる

 データ分析・活用の成果は、どこで生まれるでしょうか?答えは「現場」です。データ分析そのものからは何も生まれません。これを意外と忘れがちです。

 例えば……

  • 「見える化」さえすれば
  • 「データ分析」さえすれば
  • 「予測モデル構築」さえすれば
  • 「BIやCRMなどのデータ分析・活用基盤を整備」さえすれば
  • 「AI(人工知能)」さえ導入すれば

 ……とっても嬉しい何かが起こるに違いない。このように考えている方に出会います。多くの場合、嬉しいビジネス成果を手にすることはあまりないことでしょう。今回は「データ分析・活用の成果は現場で生まれるという当たり前の事実」というお話しをします。

 

1、データ分析:Input → Output → Outcome

 「データ分析・活用の流れ」を「Input → Output → Outcome」と単純化して考えてみます。「Input」とは、蓄積されたデータや、何かしらの情報です。この「Input」を使いデータ分析などを実施し、インフォメーションをインテリジェンス化します。「Output」とは、データ分析した「分析結果」などです。適切なデータ分析などを実施できれいれば、それはインテリジェンスです。「Outcome」とは、その分析結果を現場で活用して得られた「成果」です。

(1) インフォメーションとインテリジェンス

 インフォメーションとインテリジェンスというワードが登場したので、簡単に補足します。データには、アクションに直接結びつけられるかどうかで2つの状態があります。

  • インフォメーション
  • インテリジェンス

 どちらも日本語では情報と訳されます。しかし、ビジネスでのデータ分析・活用上は大きく異なります。非常にざっくり言うと、次のようになります。

  • インフォメーションは見ただけではアクションを起こすことが「できない」データ
  • インテリジェンスは見ただけでアクションを起こすことが「できる」データ

 このことは、データをビジネスで活用する上で、強く意識しておいた方が良いでしょう。

(2) データ分析の価値は、「Outcome」(ビジネス成果)で評価される

 データ分析の価値は「Input → Output」で評価することはできません。単なる分析結果に過ぎないからです。その分析結果を使い、どのような価値を生み出したのかは「Output」の先の「Outcome」で分かります。

 先ほど述べましたが「Outcome」は分析結果を現場で活用し得られた「成果」です。要は「Input → Output」のデータ分析そのものの価値は「Outcome」(ビジネス成果)で評価されます。その評価が金額換算できれば「Input → Output」のデータ分析そのものの価値評価を金額で示すことができるようになります。

(3) Outcome(ビジネス成果)はどこで生まれるのか?

 ところで、Outcome(ビジネス成果)はどこで生まれるのでしょうか?このOutcome(ビジネス成果)は、「データ分析を活用する『現場』」で生まれます。この「データ分析を活用する『現場』」は、組織の末端だけではありません。例えば、データ分析を活用する現場が「経営の現場」ならば、経営者向けのデータ分析になります。

 

2、データ分析:忘れられる活用現場

 データ分析というワードから、どうしても「データ」や「分析技術」に目が行きがちです。しかし、意識すべきは「データ分析を活用する『現場』」です。この当然のことが、データをこねくり回していると、忘れてしまうことがあります。

 忘れているというよりも、「データ分析を活用する『現場』」のことが頭の端に追いやられ、データと格闘することがメインとなることも少なくありません。

(1) 活用現場を強烈に意識したデータ分析

 現場で活用しにくい何かが生み出され、結果的にOutcome(ビジネス成果)が生まれません。「成果のでる分析」ではなく「成果のでない分析」をしてしまうことがあります。注意が必要です。Outcome(ビジネス成果)を生むためには、常に「データ分析を活用する『現場』」を強烈に意識しつづけることが求められます。

 

3、今回のまとめ:成果は現場で生まれる

 今回は「データ分析・活用の成果は現場で生まれるという当たり前の事実」というお話しをしました。

 データをこねくり回していると「データ分析を活用する『現場』」のことが頭の端に追いやられ、気が付くと、データと格闘することがメインとなることも少なくありません。その結果「成果のでる分析」ではなく「成果のでない分析」をしてしまうことがあります。

 Outcome(ビジネス成果)を生むためには、常に「データ分析を活用する『現場』」を強烈に意識しつづけることが求められます。それだけでも「成果のでない分析」から「成果のでる分析」に大きく近づきます。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
プロセス改革を実現することで、データ分析は大きな価値を生み出す データ分析講座(その65)

◆ データ分析で「IT化の不効率」を乗り越える「プロセス改革」  2000年頃からIT化の波が押し寄せました。ITバブルがあったころです。当時、ビジ...

◆ データ分析で「IT化の不効率」を乗り越える「プロセス改革」  2000年頃からIT化の波が押し寄せました。ITバブルがあったころです。当時、ビジ...


テキストマイニング技術のビジネスへの応用とその効果(その2)

   前回のその1に続いて解説します。 2. トランザクティブ・メモリー  トランザクティブ・メモリーは、1980年代半ばに米ハーバード大...

   前回のその1に続いて解説します。 2. トランザクティブ・メモリー  トランザクティブ・メモリーは、1980年代半ばに米ハーバード大...


時系列データに対するクロスバリデーション法、データ分析講座(その307)

    ビジネスの世界では、売上などの時系列データを使い予測モデルを構築し、近未来を予測しながらビジネス活動する人や組織があり...

    ビジネスの世界では、売上などの時系列データを使い予測モデルを構築し、近未来を予測しながらビジネス活動する人や組織があり...


「情報マネジメント一般」の活用事例

もっと見る
‐情報収集で配慮すべき事項(第1回)‐  製品・技術開発力強化策の事例(その9)

 前回の事例その8に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

 前回の事例その8に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...


現場のExcel依存に注意しよう

 マイクロソフトの「Excel」は企業の業務遂行にとって欠かせないツールになりました。数字の集計、グラフの作成にとどまらず、作業伝票の発行、作業の管理、資...

 マイクロソフトの「Excel」は企業の業務遂行にとって欠かせないツールになりました。数字の集計、グラフの作成にとどまらず、作業伝票の発行、作業の管理、資...


‐情報収集と開発活動、営業の役割‐  製品・技術開発力強化策の事例(その12)

   前回の事例その11に続いて解説します。製品開発は完了したがどのように売れば良いのか、ベンチャ-ビジネスの相談や異業種交流の会合では特に売り方に関する...

   前回の事例その11に続いて解説します。製品開発は完了したがどのように売れば良いのか、ベンチャ-ビジネスの相談や異業種交流の会合では特に売り方に関する...