データ分析のテーマ データ分析講座(その138)

更新日

投稿日

 

◆ 筋のいいテーマと積小為大

 データ分析のテーマには、筋の良いものと悪いものがあります。知らず知らずのうちに、筋の悪いテーマを選んでしまい、そのテーマに挑むと苦労も絶えません。そのテーマが、会社の生き死にを左右するとか、部署や製品にとって避けて通れない、挑むことが宿命付けられているのなら仕方ありませんがそうではなく、幾つかある複数テーマの中の選択肢の一つであるのなら、ぜひ避けたいものです。では、どうすればいいのでしょうか。今回は「筋のいいテーマと積小為大」というお話しをします。



1、筋の良し悪し

 幾つかのデータ分析の候補があり、その中から挑むテーマを選択する時、可能ならば筋の良いテーマを選びたいものです。しかしながら、筋の良し悪しの定義は、人によって異なります。そのため、当然ながらイメージすることも異なることでしょう。ここでは、筋の良し悪しを以下の2つの軸で考えます。

  • 容易性
  • インパクト

2、容易性

 容易性とは、どれだけ簡単に実現できるのかということです。もちろんテーマに関してです。もう少し具体的にいうと、「テーマと挙げられた問題解決が、データを使ってどれだけ容易に実現できるのか」ということです。容易性の観点は次の3つです。

  • 取得
  • 分析
  • 活用

(1) 取得に関する容易性

 取得とはデータ取得のことです。すぐ入手できるのであれば容易ですし、データそのものが存在せずこれから蓄積するのであれば容易とはいえません。

(2) 分析に関する容易性

 分析とは、入手したデータの整備・加工・集計・分析・モデル構築などのことです。データを入手できたからといっても、分析できる状態になっていることは少なく、何かしら整備や加工などが必要になります。これが意外と大変です。その後の集計や分析、モデル構築などは、ある程度のスキルがないと大変かどうかすら判断できないかもしれません。

(3) 活用に関する容易性

 活用とは、データ分析の結果や構築したモデルなどの結果をもとに実際に活用する、営業や生産、マーケティング、経営、調達など現場のことです。活用すること自体が簡単なのか、難しいのかは非常に大きなことです。現状の活動を大きく変えない活用は簡単です。しかし、現状の行動を大きく変える変革の場合、非常に難しくなります。

3、インパクト

 インパクトとは、データ分析を活用した時に得られる成果の大きさです。基本的に定量的な指標で表します。例えば、受注件数やセミナー申込者数、歩留まり(良品の割合)、事業貢献利益率、コストカットの割合などです。活用する現場によって、インパクトの指標が異なると、テーマ選定やテーマ評価の際に困ります。そのため、可能であればすべて「金額(円)」で表現するようにしましょう。そう考えると、インパクトとはデータ分析・活用によってもたらされる「金額(円)」です。

(1) 筋の良いテーマとは

 容易性 × インパクトの掛け算で考えたとき、筋の良いテーマはどうなるでしょうか?筋の良いテーマとは「簡単でインパクトが大きい」テーマです(下図)

 そのため、複数のテーマ候補があるのなら、簡単でインパクトが大きいテーマを選びましょう、となります。しかし、ビッグデータだ! データサイエンスだ!! 機械学習だ!!! と盛り上がっている時、決まって「インパクトが大きいが難しいテーマ」を選びがちです。なぜあえて難しいテーマを選ぶのか謎なくらい「インパクトが大きいが難しいテーマ」を選んでいるのです。

 実現に月日が必要で、労の大きさを考えると、パフォーマンス効率は良いとはいえません。実現すれば「おぉー」という感嘆の声が聞こえるかもしれませんが、非常に大きな忍耐力が必要となります。

 ですので、会社の生き死にを左右するとか、部署や製品にとって避けて通れない、挑むことが宿命付けられているのでなければ「簡単でインパクトが大きいテーマ」を選び、ガンガン成果を生み出し続けたほうがいいでしょう。特に、データ分析・活用の経験値がまだ十分でない場合「簡単でインパクトが大きいテーマ」を次から次へと片付けて成果を出し続けることは、大きな経験となります。

(2) 積小為大なテーマ

 「簡単でインパクトが大きいテーマ」が、いつでもあるわけではありませんし、あってもそれほど多くはありません。多くのデータ分析のテーマ候補は「インパクトが大きいが難しいテーマ」もしくは「簡単だけどインパクトの小さなテーマ」になります(下図)

 ちなみに「インパクトが小さく難しいテーマ」は論外です。ここで一つの大きな悩みが生まれます。「インパクトが大きいが難しいテーマ」と「簡単だけどインパクトの小さなテーマ」どちらを優先して選ぶべきか?

 これという答えはありませんが、まだデータ分析・活用の成果が出ていないのなら「簡単だけどインパクトの小さなテーマ」を優先すべきです。理由はあります。

 「簡単だけどインパクトの小さなテーマ」の場合、簡単に成果が出るため、成功体験をどんどん詰めて、関わった人のデータ分析・活用の能力を高めるからです。

 インパクトの小さなテーマであっても、成果は成果です。「ちりも積もれば山となる」ということで「簡単だけどインパクトの小さなテーマ」に挑み、小さなビジネス成果を積み上げることで、それなりの大きなビジネス成果へとなります。まさに、二宮尊徳の「...

 

◆ 筋のいいテーマと積小為大

 データ分析のテーマには、筋の良いものと悪いものがあります。知らず知らずのうちに、筋の悪いテーマを選んでしまい、そのテーマに挑むと苦労も絶えません。そのテーマが、会社の生き死にを左右するとか、部署や製品にとって避けて通れない、挑むことが宿命付けられているのなら仕方ありませんがそうではなく、幾つかある複数テーマの中の選択肢の一つであるのなら、ぜひ避けたいものです。では、どうすればいいのでしょうか。今回は「筋のいいテーマと積小為大」というお話しをします。



1、筋の良し悪し

 幾つかのデータ分析の候補があり、その中から挑むテーマを選択する時、可能ならば筋の良いテーマを選びたいものです。しかしながら、筋の良し悪しの定義は、人によって異なります。そのため、当然ながらイメージすることも異なることでしょう。ここでは、筋の良し悪しを以下の2つの軸で考えます。

  • 容易性
  • インパクト

2、容易性

 容易性とは、どれだけ簡単に実現できるのかということです。もちろんテーマに関してです。もう少し具体的にいうと、「テーマと挙げられた問題解決が、データを使ってどれだけ容易に実現できるのか」ということです。容易性の観点は次の3つです。

  • 取得
  • 分析
  • 活用

(1) 取得に関する容易性

 取得とはデータ取得のことです。すぐ入手できるのであれば容易ですし、データそのものが存在せずこれから蓄積するのであれば容易とはいえません。

(2) 分析に関する容易性

 分析とは、入手したデータの整備・加工・集計・分析・モデル構築などのことです。データを入手できたからといっても、分析できる状態になっていることは少なく、何かしら整備や加工などが必要になります。これが意外と大変です。その後の集計や分析、モデル構築などは、ある程度のスキルがないと大変かどうかすら判断できないかもしれません。

(3) 活用に関する容易性

 活用とは、データ分析の結果や構築したモデルなどの結果をもとに実際に活用する、営業や生産、マーケティング、経営、調達など現場のことです。活用すること自体が簡単なのか、難しいのかは非常に大きなことです。現状の活動を大きく変えない活用は簡単です。しかし、現状の行動を大きく変える変革の場合、非常に難しくなります。

3、インパクト

 インパクトとは、データ分析を活用した時に得られる成果の大きさです。基本的に定量的な指標で表します。例えば、受注件数やセミナー申込者数、歩留まり(良品の割合)、事業貢献利益率、コストカットの割合などです。活用する現場によって、インパクトの指標が異なると、テーマ選定やテーマ評価の際に困ります。そのため、可能であればすべて「金額(円)」で表現するようにしましょう。そう考えると、インパクトとはデータ分析・活用によってもたらされる「金額(円)」です。

(1) 筋の良いテーマとは

 容易性 × インパクトの掛け算で考えたとき、筋の良いテーマはどうなるでしょうか?筋の良いテーマとは「簡単でインパクトが大きい」テーマです(下図)

 そのため、複数のテーマ候補があるのなら、簡単でインパクトが大きいテーマを選びましょう、となります。しかし、ビッグデータだ! データサイエンスだ!! 機械学習だ!!! と盛り上がっている時、決まって「インパクトが大きいが難しいテーマ」を選びがちです。なぜあえて難しいテーマを選ぶのか謎なくらい「インパクトが大きいが難しいテーマ」を選んでいるのです。

 実現に月日が必要で、労の大きさを考えると、パフォーマンス効率は良いとはいえません。実現すれば「おぉー」という感嘆の声が聞こえるかもしれませんが、非常に大きな忍耐力が必要となります。

 ですので、会社の生き死にを左右するとか、部署や製品にとって避けて通れない、挑むことが宿命付けられているのでなければ「簡単でインパクトが大きいテーマ」を選び、ガンガン成果を生み出し続けたほうがいいでしょう。特に、データ分析・活用の経験値がまだ十分でない場合「簡単でインパクトが大きいテーマ」を次から次へと片付けて成果を出し続けることは、大きな経験となります。

(2) 積小為大なテーマ

 「簡単でインパクトが大きいテーマ」が、いつでもあるわけではありませんし、あってもそれほど多くはありません。多くのデータ分析のテーマ候補は「インパクトが大きいが難しいテーマ」もしくは「簡単だけどインパクトの小さなテーマ」になります(下図)

 ちなみに「インパクトが小さく難しいテーマ」は論外です。ここで一つの大きな悩みが生まれます。「インパクトが大きいが難しいテーマ」と「簡単だけどインパクトの小さなテーマ」どちらを優先して選ぶべきか?

 これという答えはありませんが、まだデータ分析・活用の成果が出ていないのなら「簡単だけどインパクトの小さなテーマ」を優先すべきです。理由はあります。

 「簡単だけどインパクトの小さなテーマ」の場合、簡単に成果が出るため、成功体験をどんどん詰めて、関わった人のデータ分析・活用の能力を高めるからです。

 インパクトの小さなテーマであっても、成果は成果です。「ちりも積もれば山となる」ということで「簡単だけどインパクトの小さなテーマ」に挑み、小さなビジネス成果を積み上げることで、それなりの大きなビジネス成果へとなります。まさに、二宮尊徳の「積小為大」(小を積んで大を致す)です。組織的な余裕と、データ分析・活用のある程度の経験値があるのなら「インパクトが大きいが難しいテーマ」に挑み、中長期的な成果を目指すのもいいでしょう。

4、今回のまとめ

 今回は「筋のいいテーマと積小為大」というお話しをしました。幾つかのデータ分析の候補があり、その中から挑むテーマを選択する時、可能ならば筋の良いテーマを選びましょう。

  ここでは、筋の良し悪しを以下の2つの軸で考えます。容易性とは、データ取得の容易性のほか、分析やモデル構築の容易性、その結果についての活用のしやすさという意味での容易性です。インパクトは、そのテーマに挑み得られる「金額(円)」です。売上アップ額、コストカット額などです。

 この2軸で考えたとき、筋の良いテーマとは「簡単でインパクトが大きいテーマ」のことです。「簡単でインパクトが大きいテーマ」の次に優先すべきは「簡単だけどインパクトの小さなテーマ」です。データ分析・活用の経験に不安がある場合には、小さなテーマに挑みどんどん成果を出すことで、大きなビジネス成果を生み出すとともに、データ分析・活用の経験値を蓄積します。組織的な余裕と、データ分析・活用のある程度の経験値があるのなら「インパクトが大きいが難しいテーマ」に挑むのも良いでしょう。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ駆動型意思決定を支援するシャープレイバリュー(その2):データ分析講座(その360)

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! ▼さらに幅広く学ぶなら!「分野別のカリキュラ...

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! ▼さらに幅広く学ぶなら!「分野別のカリキュラ...


業務プロセスを捉えることで、人の動きが見え、データ分析に具体性と躍動感が生まれる データ分析講座(その80)

◆ とりあえず、業務プロセスを捉えよ!人の動きの見えないデータ分析に納得感は生まれない  「いくらデータ分析をしても、目立ったビジネス成果が生まれな...

◆ とりあえず、業務プロセスを捉えよ!人の動きの見えないデータ分析に納得感は生まれない  「いくらデータ分析をしても、目立ったビジネス成果が生まれな...


見込み顧客の受注予測とは データ分析講座(その252)

  法人相手のビジネスやECサイト、個別面談を通すようなビジネスなどでは、顧客をIDベースで追えるケースが多いのです。運が良ければ、リード...

  法人相手のビジネスやECサイト、個別面談を通すようなビジネスなどでは、顧客をIDベースで追えるケースが多いのです。運が良ければ、リード...


「情報マネジメント一般」の活用事例

もっと見る
‐社内の問題克服による開発活動‐  製品・技術開発力強化策の事例(その14)

 前回の事例その13に続いて解説します。社内における様々な問題を高いレベルで深く追及して解決することが、競争力のある技術を育成し、売れる製品を生み出す事に...

 前回の事例その13に続いて解説します。社内における様々な問題を高いレベルで深く追及して解決することが、競争力のある技術を育成し、売れる製品を生み出す事に...


ソフトウェア特許とは(その2)

4.ソフトウェア特許のとり方    前回のその1に続いて解説します。    ソフトウェア特許の取得方法にはノウハウがあります。特許のことを知らない...

4.ソフトウェア特許のとり方    前回のその1に続いて解説します。    ソフトウェア特許の取得方法にはノウハウがあります。特許のことを知らない...


守秘義務は情報社会の命綱

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...