データドリブンとは「データ用いた継続的改善」である データ分析講座(その186)

更新日

投稿日

データ分析

 

データ活用で重要なのは、続けることです。打ち上げ花火のような一発ドカンと何かをするのではなく、地味に続けることが重要です。打ち上げ花火よりも、線香花火に近いかもしれません。今回は、「データドリブンとは『データ用いた継続的改善』である」というお話しをします。

【目次】

1.データ活用は本体地味なもの
(1)「データドリブン」とは?
(2)データ活用の継続性
(3)「データドリブン」の中に「アナリティクス」は内包されている
(4)「アナリシス」と「シンセシス」

2.データ・コンティニュアンス・インプルーブメント

3.今回のまとめ

 

1.データ活用は本体地味なもの

データ活用は本体地味なもので、華やかさはありません。何かを上手く運ぶためのサポート役です。

 

データ活用の現場が、経営の現場であれば経営者をサポートし、営業の現場であれば営業パーソンをサポートし、マーケティングの現場であればマーケターをサポートし、生産の現場であれば工員や管理者をサポートし、マネジメントの現場であれば管理職をサポートし、企画の現場であれば企画担当者をサポートし、調達の現場であれば調達の担当者をサポートします。

 

このような「データ活用の現場」で、データ活用を続けることが重要です。データ分析者やデータサイエンティスト、機械学習エンジニアなどと呼ばれる人だけが、頑張って続けても成果はでません。成果を生み出す「現場」がデータ活用を続けることが重要です。

 

(1)「データドリブン」とは?

「データドリブン」というキーワードを聞いて、何を思い浮かべるでしょうか。「ドリブン」は「駆動」と訳されます。「駆動」とは、「動力を与えて動かすこと」です。その「動力」が「データ」である場合、「データドリブン」となります。

 

つまり、「データドリブン」とは、得られた「データ」をもとに次の「アクション」を起こしていくことです。そう考えると、分析ツールと分析手法を駆使し問題を解決する「アナリティクス」と似たような概念になります。「アナリティクス」との違いは、何でしょうか。

 

(2)データ活用の継続性

先ほど、「データドリブン」とは「得られた『データ』をもとに次の『アクション』を起こしていくこと」であると述べました。得られた「データ」のもとに次の「アクション」を起こすと、新たな「データ」が発生します。この新たに得られた「データ」をもとに、次の「アクション」を起こします。さらに、新たな「データ」が発生します。

 

このようなループが延々と続き、データ活用に継続性が生まれます。「アナリティクス」の場合、継続してもいいし継続しなくても構いません。

 

(3)「データドリブン」の中に「アナリティクス」は内包されている

アナリティクスとは、分析ツールと分析手法を駆使し問題を解決することです。

 

「アナリティクス」は、分析ツールと分析手法を駆使し問題が解決さえすればいいのですから、場合によっては1回実施し終了する場合もあります。データ活用の継続性の問題か、というとそうでもありません。

 

「データドリブン」の中に「アナリティクス」は内包されています。「データドリブン」とは「得られた『データ』をもとに次の『アクション』を起こしていくこと」です。この「得られた『データ』をもとに次の『アクション』を起こしていく」ための技術が「アナリティクス」です。

 

(4)「アナリシス」と「シンセシス」

「アナリティクス」の中の、個々の分析行為が「アナリシス」です。

 

アクションを起こすために、「アナリシス」で得られた個々の分析結果や予測結果などの様々な情報を統合するのが「シンセシス」です。「アナリシス」と「シンセシス」は、「アナリティクス」の両輪です。分析結果や予測結果などを出力した後に、次のアクションが生まれないとき、「シンセシス」に問題があるケースが多いです。

 

このあたりの問題も解決しながらデータドリブン化を実現するためのやり方があります。別の機会にお話しします。

 

2.データ・コンティニュアンス・インプルーブメント

「データドリブン」とは、「継続的」に「得られた『データ』をもとに次の『アクション』を起こすこと」です。言い換えると、「アナリティクスを実施し問題を解決し続けること」です。さらに言い換えると、「継続的にアナリシスとシンセシスを実施し問題を解決し続けること」です。

 

この「問題を解決し続けること」を1ワードで表現すると「継続的改善」(コンティニュアンス・インプルーブメント)になります。要するに、データドリブンとは「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)なのです。

 

「継続的改善」(コンティニュアンス・インプルーブメント)とは、「昨日より今日」「今日より明日」といった継続的な改善活動です。「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)の場合には、データを上手く用いて「昨日より今日」「今日より明日」といった継続的な改善活動を実施する、ということです。

 

データ活用の現場で実現すべきは、この「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメ...

データ分析

 

データ活用で重要なのは、続けることです。打ち上げ花火のような一発ドカンと何かをするのではなく、地味に続けることが重要です。打ち上げ花火よりも、線香花火に近いかもしれません。今回は、「データドリブンとは『データ用いた継続的改善』である」というお話しをします。

【目次】

1.データ活用は本体地味なもの
(1)「データドリブン」とは?
(2)データ活用の継続性
(3)「データドリブン」の中に「アナリティクス」は内包されている
(4)「アナリシス」と「シンセシス」

2.データ・コンティニュアンス・インプルーブメント

3.今回のまとめ

 

1.データ活用は本体地味なもの

データ活用は本体地味なもので、華やかさはありません。何かを上手く運ぶためのサポート役です。

 

データ活用の現場が、経営の現場であれば経営者をサポートし、営業の現場であれば営業パーソンをサポートし、マーケティングの現場であればマーケターをサポートし、生産の現場であれば工員や管理者をサポートし、マネジメントの現場であれば管理職をサポートし、企画の現場であれば企画担当者をサポートし、調達の現場であれば調達の担当者をサポートします。

 

このような「データ活用の現場」で、データ活用を続けることが重要です。データ分析者やデータサイエンティスト、機械学習エンジニアなどと呼ばれる人だけが、頑張って続けても成果はでません。成果を生み出す「現場」がデータ活用を続けることが重要です。

 

(1)「データドリブン」とは?

「データドリブン」というキーワードを聞いて、何を思い浮かべるでしょうか。「ドリブン」は「駆動」と訳されます。「駆動」とは、「動力を与えて動かすこと」です。その「動力」が「データ」である場合、「データドリブン」となります。

 

つまり、「データドリブン」とは、得られた「データ」をもとに次の「アクション」を起こしていくことです。そう考えると、分析ツールと分析手法を駆使し問題を解決する「アナリティクス」と似たような概念になります。「アナリティクス」との違いは、何でしょうか。

 

(2)データ活用の継続性

先ほど、「データドリブン」とは「得られた『データ』をもとに次の『アクション』を起こしていくこと」であると述べました。得られた「データ」のもとに次の「アクション」を起こすと、新たな「データ」が発生します。この新たに得られた「データ」をもとに、次の「アクション」を起こします。さらに、新たな「データ」が発生します。

 

このようなループが延々と続き、データ活用に継続性が生まれます。「アナリティクス」の場合、継続してもいいし継続しなくても構いません。

 

(3)「データドリブン」の中に「アナリティクス」は内包されている

アナリティクスとは、分析ツールと分析手法を駆使し問題を解決することです。

 

「アナリティクス」は、分析ツールと分析手法を駆使し問題が解決さえすればいいのですから、場合によっては1回実施し終了する場合もあります。データ活用の継続性の問題か、というとそうでもありません。

 

「データドリブン」の中に「アナリティクス」は内包されています。「データドリブン」とは「得られた『データ』をもとに次の『アクション』を起こしていくこと」です。この「得られた『データ』をもとに次の『アクション』を起こしていく」ための技術が「アナリティクス」です。

 

(4)「アナリシス」と「シンセシス」

「アナリティクス」の中の、個々の分析行為が「アナリシス」です。

 

アクションを起こすために、「アナリシス」で得られた個々の分析結果や予測結果などの様々な情報を統合するのが「シンセシス」です。「アナリシス」と「シンセシス」は、「アナリティクス」の両輪です。分析結果や予測結果などを出力した後に、次のアクションが生まれないとき、「シンセシス」に問題があるケースが多いです。

 

このあたりの問題も解決しながらデータドリブン化を実現するためのやり方があります。別の機会にお話しします。

 

2.データ・コンティニュアンス・インプルーブメント

「データドリブン」とは、「継続的」に「得られた『データ』をもとに次の『アクション』を起こすこと」です。言い換えると、「アナリティクスを実施し問題を解決し続けること」です。さらに言い換えると、「継続的にアナリシスとシンセシスを実施し問題を解決し続けること」です。

 

この「問題を解決し続けること」を1ワードで表現すると「継続的改善」(コンティニュアンス・インプルーブメント)になります。要するに、データドリブンとは「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)なのです。

 

「継続的改善」(コンティニュアンス・インプルーブメント)とは、「昨日より今日」「今日より明日」といった継続的な改善活動です。「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)の場合には、データを上手く用いて「昨日より今日」「今日より明日」といった継続的な改善活動を実施する、ということです。

 

データ活用の現場で実現すべきは、この「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)です。

 

3.今回のまとめ

今回は、「データドリブンとは『データ用いた継続的改善』である」というお話しをしました。データ活用で重要なのは、続けることです。打ち上げ花火のような一発ドカンと何かをするのではなく、地味に続けることが重要です。打ち上げ花火よりも、線香花火に近いかもしれません。

 

キーワードは「データドリブン」です。

 

データドリブンとは「データを用いた継続的な改善」(データ・コンティニュアンス・インプルーブメント)です。データを上手く用いて「昨日より今日」「今日より明日」といった継続的な改善活動を実施する、ということです。このようにデータ活用は本体地味なもので、華やかさはありません。何かを上手く運ぶためのサポート役です。

 

データ分析者やデータサイエンティスト、機械学習エンジニアなどと呼ばれる人だけが、頑張って続けても成果はでません。「データ活用の現場」で、データ活用を続けることが重要です。

 

次回に続きます。

 

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ分析上必須な2つのロジカルシンキング データ分析講座(その198)

    ビジネス必須のスキルとしてロジカルシンキングというものがあります。系統図法という名称で呼ばれていたもので、昔から日本の製造...

    ビジネス必須のスキルとしてロジカルシンキングというものがあります。系統図法という名称で呼ばれていたもので、昔から日本の製造...


セーフティシステムのセキュリティ対策 制御システム(その4)

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...


国際規格・業界規格 制御システム(その6)

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...


「情報マネジメント一般」の活用事例

もっと見る
既存コア技術強化のためのオープン・イノベーション:富士フイルムの例

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...


‐販路開拓に関する問題 第1回‐  製品・技術開発力強化策の事例(その17)

 前回の事例その16に続いて解説します。開発が完了したから販売先を探す。そのような考え方で開発に従事することは根本的に間違っている事は既に述べました。開発...

 前回の事例その16に続いて解説します。開発が完了したから販売先を探す。そのような考え方で開発に従事することは根本的に間違っている事は既に述べました。開発...


守秘義務は情報社会の命綱

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...