分析・活用の「テーマ」は何ですか データ分析講座(その179)

更新日

投稿日

データ分析

 

◆ 「このデータで、何ができるのか」という問いには気を付けよう

 最近喜ばしいことに、データが蓄積される機会が増えています。しかし、データがある程度蓄積されたとき、次のような問いがなされる場合があります。「このデータに対し、どのような分析をすればいいのか」「どの分析手法で、何が解決できるのか」「このデータで、何ができるのか」などです。今回は「『このデータで、何ができるのか』という問いには気を付けよう」というお話しです。

【目次】

1. データは、どんどん溜まる
(1)このデータ、何かに使えるんじゃない?
(2)「データ」を「にんじん」に置き換えて考えてみる
2. このデータで、何ができるの?
(1)冷蔵庫にある余り物でおいしい料理を作る
(2)にんじんを使った料理メニューを列挙せよ!
3. データの存在を忘れよう!
4. 今回のまとめ

 

1. データ分析:データは、どんどん溜まる

 データは恐ろしいことに、どんどん溜まってきます。溜め始めると、気づくととんでもない量になることも少なくありません。そのため、ある企業では、ある一定期間が過ぎたデータを捨てたりします。またある企業では、データを集約し(例:POSデータをレシート単位から1日単位に集計)、元のローデータを捨てたりします。

 そして、あることに気が付きます。このデータは何かに使えるかもしれない、ということです。

(1)このデータ、何かに使えるのではないか。

 昨今の、ビッグデータブームやデータサイエンス、機械学習、AIなどの耳障りのいいキーワードに乗せられ、「このデータ、何かに使えるんじゃないか」と問うてくる人も多いでしょう。「このデータ、何かに使えるんじゃないのか」の次に来る問いが、先ほど挙げた以下の問いです。

  • 「このデータに対し、どのような分析をすればいいのか」
  • 「どの分析手法で、何が解決できるのか」
  • 「このデータで、何ができるのか」

 当然の流れのようにも思えます。「データ」を「にんじん」に置き換えたらどうでしょうか。

(2)「データ」を「にんじん」に置き換えて考えてみる

 帰宅したらたくさんの「にんじん」が家にありました。「このにんじん、何かに使えるんじゃないのか」「料理」に使えるでしょう。問題は、にんじんを使う料理メニューがたくさんあることです。

 

2. データ分析:このデータで、何ができるのか

 先ほど挙げた以下の問いで、この「にんじん」の話しで置き換えてみます。

  • 「このデータに対し、どのような分析をすればいいのか」
  • 「どの分析手法で、何が解決できるのか」
  • 「このデータで、何ができるのか」

 次のようになりました。

  • 「このにんじんに対し、どのような調理をすればいいのか」
  • 「どの調理法で、何(料理メニュー)ができるのか」
  • 「このにんじんで、何(料理メニュー)ができるのか」

 このような問いを投げかけられたら、あたたは次にように思うかもしれません。

  • 「何を作りたいんだ!」
  • 「何を食べたいんだ!」

 データサイエンスもデータ分析も機械学習なども同じです。

  • 「何をしたいんだ!」

 要は、データ分析・活用の「テーマ」の問題です。

(1)冷蔵庫にある余り物でおいしい料理を作る

 冷蔵庫にある余り物で、おいしい料理を作るには熟練した何かが必要でしょう。蓄積されたデータから、気の利いたデータ分析をしたり、数理モデルを作り、ビジネス成果を出す人も同様に、熟練した何かが必要でしょう。

 生まれたときから持ち合わせた才能もあるかもしれませんが、多くの場合、熟練した何かが必要です。データから適切なデータ分析・活用のテーマを創造できる人は稀です。1,2年や5,6年程度の経験値では、通常は無理でしょう。ですので、、、

 「このデータで、何ができるのか」

 、、、という問いにが発せられたとき、次の問いをしましょう。

 「何をしたいんだ!」

 要は、データ分析・活用の「テーマ」は何ですか? ということです。

(2)にんじんを使った料理メニューを列挙せよ!

 「何をしたいんだ!」という問いの回答が、次のような場合は最悪です。

  •  「このデータで、何ができそうか、列挙して、、、」
  •  「にんじん」の例えで言えば、、、
  •  「にんじんを使った料理メニューを列挙せよ!」

 、、、という感じです。要は、データ分析・活用の「テーマ」候補を列挙しろ! というのです。無茶苦茶です。

 

3. データ分析:データの存在を忘れよう!

 溜まったデータの呪縛にとらわれたら大変です。このデータで何ができそうか...

データ分析

 

◆ 「このデータで、何ができるのか」という問いには気を付けよう

 最近喜ばしいことに、データが蓄積される機会が増えています。しかし、データがある程度蓄積されたとき、次のような問いがなされる場合があります。「このデータに対し、どのような分析をすればいいのか」「どの分析手法で、何が解決できるのか」「このデータで、何ができるのか」などです。今回は「『このデータで、何ができるのか』という問いには気を付けよう」というお話しです。

【目次】

1. データは、どんどん溜まる
(1)このデータ、何かに使えるんじゃない?
(2)「データ」を「にんじん」に置き換えて考えてみる
2. このデータで、何ができるの?
(1)冷蔵庫にある余り物でおいしい料理を作る
(2)にんじんを使った料理メニューを列挙せよ!
3. データの存在を忘れよう!
4. 今回のまとめ

 

1. データ分析:データは、どんどん溜まる

 データは恐ろしいことに、どんどん溜まってきます。溜め始めると、気づくととんでもない量になることも少なくありません。そのため、ある企業では、ある一定期間が過ぎたデータを捨てたりします。またある企業では、データを集約し(例:POSデータをレシート単位から1日単位に集計)、元のローデータを捨てたりします。

 そして、あることに気が付きます。このデータは何かに使えるかもしれない、ということです。

(1)このデータ、何かに使えるのではないか。

 昨今の、ビッグデータブームやデータサイエンス、機械学習、AIなどの耳障りのいいキーワードに乗せられ、「このデータ、何かに使えるんじゃないか」と問うてくる人も多いでしょう。「このデータ、何かに使えるんじゃないのか」の次に来る問いが、先ほど挙げた以下の問いです。

  • 「このデータに対し、どのような分析をすればいいのか」
  • 「どの分析手法で、何が解決できるのか」
  • 「このデータで、何ができるのか」

 当然の流れのようにも思えます。「データ」を「にんじん」に置き換えたらどうでしょうか。

(2)「データ」を「にんじん」に置き換えて考えてみる

 帰宅したらたくさんの「にんじん」が家にありました。「このにんじん、何かに使えるんじゃないのか」「料理」に使えるでしょう。問題は、にんじんを使う料理メニューがたくさんあることです。

 

2. データ分析:このデータで、何ができるのか

 先ほど挙げた以下の問いで、この「にんじん」の話しで置き換えてみます。

  • 「このデータに対し、どのような分析をすればいいのか」
  • 「どの分析手法で、何が解決できるのか」
  • 「このデータで、何ができるのか」

 次のようになりました。

  • 「このにんじんに対し、どのような調理をすればいいのか」
  • 「どの調理法で、何(料理メニュー)ができるのか」
  • 「このにんじんで、何(料理メニュー)ができるのか」

 このような問いを投げかけられたら、あたたは次にように思うかもしれません。

  • 「何を作りたいんだ!」
  • 「何を食べたいんだ!」

 データサイエンスもデータ分析も機械学習なども同じです。

  • 「何をしたいんだ!」

 要は、データ分析・活用の「テーマ」の問題です。

(1)冷蔵庫にある余り物でおいしい料理を作る

 冷蔵庫にある余り物で、おいしい料理を作るには熟練した何かが必要でしょう。蓄積されたデータから、気の利いたデータ分析をしたり、数理モデルを作り、ビジネス成果を出す人も同様に、熟練した何かが必要でしょう。

 生まれたときから持ち合わせた才能もあるかもしれませんが、多くの場合、熟練した何かが必要です。データから適切なデータ分析・活用のテーマを創造できる人は稀です。1,2年や5,6年程度の経験値では、通常は無理でしょう。ですので、、、

 「このデータで、何ができるのか」

 、、、という問いにが発せられたとき、次の問いをしましょう。

 「何をしたいんだ!」

 要は、データ分析・活用の「テーマ」は何ですか? ということです。

(2)にんじんを使った料理メニューを列挙せよ!

 「何をしたいんだ!」という問いの回答が、次のような場合は最悪です。

  •  「このデータで、何ができそうか、列挙して、、、」
  •  「にんじん」の例えで言えば、、、
  •  「にんじんを使った料理メニューを列挙せよ!」

 、、、という感じです。要は、データ分析・活用の「テーマ」候補を列挙しろ! というのです。無茶苦茶です。

 

3. データ分析:データの存在を忘れよう!

 溜まったデータの呪縛にとらわれたら大変です。このデータで何ができそうかだけを考え、ものすごく視野が狭まります。なので、一旦はデータの存在を忘れ、「お困りごと」を列挙するところから始めましょう!その中に、素敵なデータ分析・活用のテーマが眠っています。

 

4. データ分析:今回のまとめ

 今回は「『このデータで、何ができるのか』という問いには気を付けよう」というお話しをしました。データがある程度蓄積されたとき、次のような問いがなされる場合があります。

  • 「このデータに対し、どのような分析をすればいいのか」
  • 「どの分析手法で、何が解決できるのか」
  • 「このデータで、何ができるのか」

 このような問いが発せられたら、次にように問いましょう。

  • 「何をしたいんだ!」

 要は、データ分析・活用の「テーマ」は何ですか? ということです。データから適切なデータ分析・活用のテーマを創造できる人は稀です。そのため、一旦はデータの存在を忘れ、「お困りごと」を列挙するところから始めましょう!その中に、素敵なデータ分析・活用のテーマが眠っています。

 

 次回に続きます。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
早わかりEDA:Electronic Design Automation

  集積回路、プリント回路基板設計と検証に使われるワークフロー、アプリケーション、手法は、CAE (Computer-Aided Engi...

  集積回路、プリント回路基板設計と検証に使われるワークフロー、アプリケーション、手法は、CAE (Computer-Aided Engi...


事例から分かるデータインサイト×現場感 データ分析講座(その209)

  2000年ごろのデータマイニングブームの頃、盛んに取り上げられた事例があります。それは、ビールおむつ事例です。この事例を元に、データ分...

  2000年ごろのデータマイニングブームの頃、盛んに取り上げられた事例があります。それは、ビールおむつ事例です。この事例を元に、データ分...


データをいくら集めても100発0中が当たり前 データ分析講座(その281)

  データを使って何かを予測する、データを使って答えを導き出す、それが最適なものであると最高です。しかし、多くの場合、データを上手く活用す...

  データを使って何かを予測する、データを使って答えを導き出す、それが最適なものであると最高です。しかし、多くの場合、データを上手く活用す...


「情報マネジメント一般」の活用事例

もっと見る
‐情報収集で配慮すべき事項(第2回)‐  製品・技術開発力強化策の事例(その10)

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...


デジタルデータの保存とは

        今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...

        今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...


‐情報収集で配慮すべき事項(第3回)‐  製品・技術開発力強化策の事例(その11)

 前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...

 前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...