SOR理論とデータ分析の「XYZフレームワーク」 データ分析講座(その158)

更新日

投稿日

 

♦ レコメンド情報示し、確実なアクションを導く

 今回は「SOR理論とデータ分析の『XYZフレームワーク』」の解説です。

【目次】

1. SR理論から考えるデータ分析

2. SOR理論から考えるデータ分析

3. データ分析は「XYZフレームワーク」で整理

4. 調整変数とは

5. モニタリング情報とレコメンド情報

 

1. SR理論から考えるデータ分析

 行動心理学の世界では、SR理論(Stimulus-Response Theory)という考え方があります。行動を「刺激」(S:Stimulus)に対する「反応」(R:Response)としてとらえたものです。データ分析の枠組みで語ると「X(説明変数)」と「Y(目的変数)」の概念で捉えることができます。

  • 刺激(S:Stimulus)  :X(説明変数)
  • 反応(R:Response):Y(目的変数)

 

データ分析

図1. SR理論

 SR理論の概念はデータ活用を考える上で幅広く使えます。広告(X)を打てば売上(Y)が上がる。機器の稼働時間(X)が長くなると歩留まり(Y)が悪化する。など、色々と応用できそうです。しかし、ここで次のような問題が起こります。

 それは「同じ刺激(S:Stimulus)に対し、常に同じ反応(R:Response)が起こるわけではない」という問題です。例えば、広告打ったからといって、すべての人がその商品を購買するわけではありません。その人がどのような人なのかに依存します。例えば、稼働時間と歩留まりが悪化するタイミングの関係は、すべての工場で同じではありません。その日の気温や湿度、工員の熟練度などに依存します。

 

2. SOR理論から考えるデータ分析

 SR理論に「有機体(O:Organism)」という概念を付け加えたSOR理論(Stimulus-Organism-Response Theory)というものがあります。「有機体(O:Organism)」とは人間であったり動物であったりします。刺激(S:Stimulus)に対する反応(R:Response)だけでは説明できない現象を「有機体(O:Organism)」という概念を導入することで説明できるようにするものです。

 

3. データ分析は「XYZフレームワーク」で整理

 ビジネス系のデータ分析の世界であれば「有機体(O:Organism)」は生物個体だけでなく、AIであったり装置であったり工場のラインなど生物以外も付け加わります。つまり、同じX(説明変数)を与えても、個人の属性や工場の状況などにより、Y(目的変数)の値が変わる、ということです。

  • 刺激(S:Stimulus)     :X(説明変数)
  • 有機体(O:Organism):Z(調整変数 or 説明変数)
  • 反応(R:Response)    : Y(目的変数)

 

データ分析

図2. XYZフレームワーク

 

4. 調整変数とは

 ここでは「YとXの関係はZによって変化する」ということを表現するために調整変数という概念を使います。例えば「広告」(X)と「購買」(Y)の関係性は「個人属性」(Z)によって異なる「工場の稼働時間」(X)と「歩留まり悪化のタイミング」(Y)の関係性は「天候(気温や湿度など)」(Z)によって異なる、といったことです。

 調整変数は、説明変数と一緒に扱うこともありますが、意識的に区別しておいた方がよいでしょう。

 

5. モニタリング情報とレコメンド情報

 XYZの3種類(説明変数X・調整変数Z・目的変数Y)のデータを分析することで、例えば以下のような2種類の情報を得ることができます。

  • レコメンド情報
  • モニタリング情報

 

データ分析

図3. レコメンド情報とモニタリング情報


 レコメンド情報とは、どのような「刺激(S:Stimulus)」(アクションなど)をすべきか、という情報です。モニタリング情報とは「刺激(S:Stimulus)」を与えた結果、どうなったのかという「反応(R:Response)」に関する情報です。通常「見える化」といった場合、こちらのモニタリング情報を指すことが多いようです。

 問題なのは「反応(R:Response)」に関するデータだけを集めてしまい...

 

♦ レコメンド情報示し、確実なアクションを導く

 今回は「SOR理論とデータ分析の『XYZフレームワーク』」の解説です。

【目次】

1. SR理論から考えるデータ分析

2. SOR理論から考えるデータ分析

3. データ分析は「XYZフレームワーク」で整理

4. 調整変数とは

5. モニタリング情報とレコメンド情報

 

1. SR理論から考えるデータ分析

 行動心理学の世界では、SR理論(Stimulus-Response Theory)という考え方があります。行動を「刺激」(S:Stimulus)に対する「反応」(R:Response)としてとらえたものです。データ分析の枠組みで語ると「X(説明変数)」と「Y(目的変数)」の概念で捉えることができます。

  • 刺激(S:Stimulus)  :X(説明変数)
  • 反応(R:Response):Y(目的変数)

 

データ分析

図1. SR理論

 SR理論の概念はデータ活用を考える上で幅広く使えます。広告(X)を打てば売上(Y)が上がる。機器の稼働時間(X)が長くなると歩留まり(Y)が悪化する。など、色々と応用できそうです。しかし、ここで次のような問題が起こります。

 それは「同じ刺激(S:Stimulus)に対し、常に同じ反応(R:Response)が起こるわけではない」という問題です。例えば、広告打ったからといって、すべての人がその商品を購買するわけではありません。その人がどのような人なのかに依存します。例えば、稼働時間と歩留まりが悪化するタイミングの関係は、すべての工場で同じではありません。その日の気温や湿度、工員の熟練度などに依存します。

 

2. SOR理論から考えるデータ分析

 SR理論に「有機体(O:Organism)」という概念を付け加えたSOR理論(Stimulus-Organism-Response Theory)というものがあります。「有機体(O:Organism)」とは人間であったり動物であったりします。刺激(S:Stimulus)に対する反応(R:Response)だけでは説明できない現象を「有機体(O:Organism)」という概念を導入することで説明できるようにするものです。

 

3. データ分析は「XYZフレームワーク」で整理

 ビジネス系のデータ分析の世界であれば「有機体(O:Organism)」は生物個体だけでなく、AIであったり装置であったり工場のラインなど生物以外も付け加わります。つまり、同じX(説明変数)を与えても、個人の属性や工場の状況などにより、Y(目的変数)の値が変わる、ということです。

  • 刺激(S:Stimulus)     :X(説明変数)
  • 有機体(O:Organism):Z(調整変数 or 説明変数)
  • 反応(R:Response)    : Y(目的変数)

 

データ分析

図2. XYZフレームワーク

 

4. 調整変数とは

 ここでは「YとXの関係はZによって変化する」ということを表現するために調整変数という概念を使います。例えば「広告」(X)と「購買」(Y)の関係性は「個人属性」(Z)によって異なる「工場の稼働時間」(X)と「歩留まり悪化のタイミング」(Y)の関係性は「天候(気温や湿度など)」(Z)によって異なる、といったことです。

 調整変数は、説明変数と一緒に扱うこともありますが、意識的に区別しておいた方がよいでしょう。

 

5. モニタリング情報とレコメンド情報

 XYZの3種類(説明変数X・調整変数Z・目的変数Y)のデータを分析することで、例えば以下のような2種類の情報を得ることができます。

  • レコメンド情報
  • モニタリング情報

 

データ分析

図3. レコメンド情報とモニタリング情報


 レコメンド情報とは、どのような「刺激(S:Stimulus)」(アクションなど)をすべきか、という情報です。モニタリング情報とは「刺激(S:Stimulus)」を与えた結果、どうなったのかという「反応(R:Response)」に関する情報です。通常「見える化」といった場合、こちらのモニタリング情報を指すことが多いようです。

 問題なのは「反応(R:Response)」に関するデータだけを集めてしまい、そのデータを集計しモニタリング情報として現場に提供するケースです。

 例えば「売り上げが悪化した」とか「生産の歩留まり(良品の割合)が悪化した」という結果だけみせられても、具体的に何をするのがいいのかは、ベテランか相当センスの良い方でないとみえこないことでしょう。

 そのため、アクション結果である「モニタリング情報」を現場に提供するとともに、何をすべきかという「レコメンド情報」も併せて現場に提供するのです。この2種類の情報(レコメンド情報とモニタリング情報)を「見える化」するためには、この2種類の情報(レコメンド情報とモニタリング情報)を生み出す必要があります。それが、データ分析です。

 

データ分析

図4. データ分析とアクション

 この2種類の情報にデータ分析を実施して現場に提供することでより良いアクションに繋げます。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
2種類の時系列データとは、 データ分析講座(その305)

  時系列データといっても色々な形のものがあります。よく見かけるのが次の2種類です。 縦持ち時系列データ(時間軸が縦方向) 横持ち...

  時系列データといっても色々な形のものがあります。よく見かけるのが次の2種類です。 縦持ち時系列データ(時間軸が縦方向) 横持ち...


4つの分析手法 データ分析講座(その18)

  ◆ ビジネスデータ分析の実践で使う「4つ」の分析手法  「データ分析の分析手法を概念的に知りたいのだけど」ビッグデータやAI(人工知...

  ◆ ビジネスデータ分析の実践で使う「4つ」の分析手法  「データ分析の分析手法を概念的に知りたいのだけど」ビッグデータやAI(人工知...


データ活用の失敗をデータで判断することのできない人々 データ分析講座(その165)

  ◆データ活用で達成すべき「本来の目的」は何ですか?  「データを活用し何かしよう」という取り組みは、10年前と比べるとかなり増えてい...

  ◆データ活用で達成すべき「本来の目的」は何ですか?  「データを活用し何かしよう」という取り組みは、10年前と比べるとかなり増えてい...


「情報マネジメント一般」の活用事例

もっと見る
‐技術開発の目標について 第2回‐  製品・技術開発力強化策の事例(その16)

 技術開発の目標を解説する以下の項目4点について、前回は、1と2を解説しましたので、今回は、第2回として、3と4を記述します。          1....

 技術開発の目標を解説する以下の項目4点について、前回は、1と2を解説しましたので、今回は、第2回として、3と4を記述します。          1....


‐情報収集で配慮すべき事項(第3回)‐  製品・技術開発力強化策の事例(その11)

 前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...

 前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...


情報、常識の検証を考える

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...