有象無象なデータとは データ分析講座(その94)

更新日

投稿日

データ分析

◆ ビッグデータブームでデータ分析が大きく変わる

 少し過去にさかのぼりますが、2012年のNHKクローズアップ現代でビッグデータの特集が組まれました。放送事例は特別なものではありませんでしたが、この日を境にある変化を私は感じるようになりました。データ分析への注目度が非常に上がっただけでなく、2000年前後のデータマイニングブームの本質を実現する機会の訪れと感じました。今回は「ビッグデータブームでデータ分析が大きく変わる」というお話しをします。

1. ビッグデータイニチアチブ

 ビッグデータが単なるブームではなく、米国という国が国家を挙げて取り組む何かであることが伺える出来事でした。この「ビッグデータイニチアチブ」は、未来に向けた研究投資に関するものです。今何か得るためではなく、未来の米国の国益を生み出すためのものです。この点は非常に重要です。「今すぐ」ではなく「未来」という点です。ビッグデータやAIなどのキーワードとともに、今すぐ特別な何かを手にできるような錯覚を覚える方もいますが、現実はそのようなことはあまりないと思います。

2. ガベージ・イン/ガベージ・アウト

 2000年頃同じようなデータ分析に関わるムーブメントがありました。データマイニングブームです。ブームで喧伝されていたキーワードの一つに「有象無象のデータの山から、今までにない宝となる何かが発見される」というものです。

 よく「ガベージ・イン/ゴスペル・アウト」と呼ばれ「ゴミの山から福音(良い知らせ)がもたらされる」といわれましたが、現実はそう簡単なものではありませんでした。そのうち「ガベージ・イン/ゴスペル・アウト」ではなく「ガベージ・イン/ガベージ・アウト」=「ゴミの山からでるのは、やっぱりゴミ」と呼ばれるようになり、世間からデータ分析は忘れ去られました。

3. データマイニングブーム時と本質は変わらない

 データマイニングブーム時に、データ分析上ある重要なパラダイムシフトが起こりました。従来のデータ分析は、少量の高品質なデータを相手に統計学的なアプローチを行いデータ分析するものでした。2000年ごろから、データが大量に蓄積されるようになりました。理由は単純でIT化の副産物としてデータが勝手に蓄積されるようになったからです。つまりIT化の広がりとともに、蓄積されるデータ量が爆発的に増えていきます。

 その爆発的に増えた有象無象のデータ、言い換えると「大量の低品質なデータ」に対しもデータ分析をしようという試みが生まれます。それがデータマイニングの諸手法です。なぜならば少量の高品質なデータを相手にする統計学的なアプローチでは、大量の低品質なデータを上手く扱えないからです。2012年頃から始まるビッグデータブームも、大量の低品質なデータを上手く活用しようという本質部分は、変わらないと思います。

4. データ分析:大きな違い

 大きな違いは12年の歳月の間に、大量の低品質なデータを上手く活用し収益急拡大したドットコム企業など、単なる夢物語を現実化する企業の成功事例が現れ注目されたことです。そこで私は「少量の高品質なデータを相手にする時代から、大量の低品質なデータを相手にする時代へ、データ分析の主流が変化したのだ」強く感じました。

 これからのデータ分析は「合目的なデータ」ではなく「有象無象なデータ」を相手にしなければならないのですが、そうすべきであると思います。ちなみに合目的なデータとは「ある目的のために計画的に集められたデータ」、有象無象なデータとは「ある目的のために集められたデータに、そうではないデータが大量に混在されたデータ」という意味で使っています。そのような有象無象なデータから、いかに価値を作るの...

データ分析

◆ ビッグデータブームでデータ分析が大きく変わる

 少し過去にさかのぼりますが、2012年のNHKクローズアップ現代でビッグデータの特集が組まれました。放送事例は特別なものではありませんでしたが、この日を境にある変化を私は感じるようになりました。データ分析への注目度が非常に上がっただけでなく、2000年前後のデータマイニングブームの本質を実現する機会の訪れと感じました。今回は「ビッグデータブームでデータ分析が大きく変わる」というお話しをします。

1. ビッグデータイニチアチブ

 ビッグデータが単なるブームではなく、米国という国が国家を挙げて取り組む何かであることが伺える出来事でした。この「ビッグデータイニチアチブ」は、未来に向けた研究投資に関するものです。今何か得るためではなく、未来の米国の国益を生み出すためのものです。この点は非常に重要です。「今すぐ」ではなく「未来」という点です。ビッグデータやAIなどのキーワードとともに、今すぐ特別な何かを手にできるような錯覚を覚える方もいますが、現実はそのようなことはあまりないと思います。

2. ガベージ・イン/ガベージ・アウト

 2000年頃同じようなデータ分析に関わるムーブメントがありました。データマイニングブームです。ブームで喧伝されていたキーワードの一つに「有象無象のデータの山から、今までにない宝となる何かが発見される」というものです。

 よく「ガベージ・イン/ゴスペル・アウト」と呼ばれ「ゴミの山から福音(良い知らせ)がもたらされる」といわれましたが、現実はそう簡単なものではありませんでした。そのうち「ガベージ・イン/ゴスペル・アウト」ではなく「ガベージ・イン/ガベージ・アウト」=「ゴミの山からでるのは、やっぱりゴミ」と呼ばれるようになり、世間からデータ分析は忘れ去られました。

3. データマイニングブーム時と本質は変わらない

 データマイニングブーム時に、データ分析上ある重要なパラダイムシフトが起こりました。従来のデータ分析は、少量の高品質なデータを相手に統計学的なアプローチを行いデータ分析するものでした。2000年ごろから、データが大量に蓄積されるようになりました。理由は単純でIT化の副産物としてデータが勝手に蓄積されるようになったからです。つまりIT化の広がりとともに、蓄積されるデータ量が爆発的に増えていきます。

 その爆発的に増えた有象無象のデータ、言い換えると「大量の低品質なデータ」に対しもデータ分析をしようという試みが生まれます。それがデータマイニングの諸手法です。なぜならば少量の高品質なデータを相手にする統計学的なアプローチでは、大量の低品質なデータを上手く扱えないからです。2012年頃から始まるビッグデータブームも、大量の低品質なデータを上手く活用しようという本質部分は、変わらないと思います。

4. データ分析:大きな違い

 大きな違いは12年の歳月の間に、大量の低品質なデータを上手く活用し収益急拡大したドットコム企業など、単なる夢物語を現実化する企業の成功事例が現れ注目されたことです。そこで私は「少量の高品質なデータを相手にする時代から、大量の低品質なデータを相手にする時代へ、データ分析の主流が変化したのだ」強く感じました。

 これからのデータ分析は「合目的なデータ」ではなく「有象無象なデータ」を相手にしなければならないのですが、そうすべきであると思います。ちなみに合目的なデータとは「ある目的のために計画的に集められたデータ」、有象無象なデータとは「ある目的のために集められたデータに、そうではないデータが大量に混在されたデータ」という意味で使っています。そのような有象無象なデータから、いかに価値を作るのかが求められる時代だと、私は2012年頃のビッグデータブーム時に感じました。

5. データ分析:大量の低品質データを相手にする時代

 今回は「ビッグデータブームでデータ分析が大きく変わる」というお話しをしました。単なる、2000年と2012年のデータ分析ブームの比較で、本質的には何も変わっていないというお話しです。

 「大量の低品質なデータを上手く活用する」という根幹の部分が同じということです。そこで、私は「少量の高品質なデータを相手にする時代から、大量の低品質なデータを相手にする時代へ、データ分析の主流が変化したのだ」と強く感じました。

 私がこのように感じたある事例があります。ある大手電機メーカーの工場のデータ分析事例です。従来の統計的品質管理の統計学的アプローチでは上手くいかなくなったのです。詳細は、この連載の別の機会に、解説します。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
IT化の不効率を加速させたビッグデータブーム データ分析講座(その75)

◆ ビッグデータブームは、IT化の不効率を加速させて余計な業務が増えた  IT化して楽になるはずが、従来よりも手間暇が掛かっている。IT化が進むほど...

◆ ビッグデータブームは、IT化の不効率を加速させて余計な業務が増えた  IT化して楽になるはずが、従来よりも手間暇が掛かっている。IT化が進むほど...


AIとセキュリティ 制御システム(その8)

    【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3....

    【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3....


MQTTとは

  MQTTを使おうとしたとき、利用できるようになるまで苦労した経験がありました。そのため今回は、MQTTの概要を解説します。 &nbs...

  MQTTを使おうとしたとき、利用できるようになるまで苦労した経験がありました。そのため今回は、MQTTの概要を解説します。 &nbs...


「情報マネジメント一般」の活用事例

もっと見る
P値で行う統計リテラシー判定

 「ピーチ」って聞いたら何を連想しますか、統計を学んでいる人に取っては「 P値 」が思い浮かぶはずです。統計学の素養がある程度備わっているか一言で知ろうと...

 「ピーチ」って聞いたら何を連想しますか、統計を学んでいる人に取っては「 P値 」が思い浮かぶはずです。統計学の素養がある程度備わっているか一言で知ろうと...


既存コア技術強化のためのオープン・イノベーション:富士フイルムの例

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...


デジタルデータの保存とは

        今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...

        今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...