結果系データしかないときの分析とは データ分析講座(その107)

更新日

投稿日

データ分析

◆ 売上や受注などの結果系データしかない時の分析

 ビッグデータの時代というものの、データを眺めてみれば何がビッグなのでしょうか。少なくとも勝手に溜まるデータがビッグになっている、ということがいえそうです。勝手に大きくなっているデータの代表がWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータです。そしてどのような企業にもあるのが売上や受注などの結果系データです。今回は「売上や受注などの結果系データしかない時、どう分析する」というお話しです。

1. データ分析: 勝手に溜まるデータは、ほぼ汚い

 先ほど勝手にビッグになっているデータの代表としてWebアクセスログやセンサーデータなどを挙げましたが、勝手に溜まるデータの多くは分析する段階でそのままの状態では使えません。なぜなら、データ分析という観点から考えると汚くて使えないからです。汚いものはキレイにすればいいので、時間さえかければ大丈夫です。

2. データ分析: データは溜めることを意識して

 Webアクセスログは比較的キレイに蓄積されますが、それでもそのままでは分析に利用できません。

 分析のための前処理がかなり必要となりますし、WebアクセスログそのものがそのままExcelで扱えるようなデータ形式でないため、そのための処理が必要になります。Webアクセスログを取得する時、タグをWebサイトに埋め込めば済みますが多くの場合、欲しいWebアクセスログを取得するためには、それなりに実装しなければなりません。分析中、実装ミスに気づくこともままあります。

 ビッグデータの時代とはいえ、結局のところデータは意識して溜めないと溜まらない、という現実は今も昔も変わらないということです。

3. C.L.ハルの「S-O-R理論」

 勝手に溜まるデータの多くが、結果系のデータです。例えばWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータも、何かしらの結果を反映したデータです。心理学の世界にC.L.ハルの「S-O-R理論」(Stimulus-Organism-Response Theory)という概念があります。非常にシンプルな概念です。

 「S」(Stimulus)は刺激、「O」(Organism)が有機体、「R」(Response)が反応です。データ分析の世界でも、そのままこの概念を活用することができます。

 結果系のデータは「R」になります。「R」が生まれるためには、「S」が必要になります。例えばマーケティングのキャンペーンは「S」で、「O」は消費者、「R」が売上などになります。

 データ分析ではよく「S」と「R」のデータから「S」と「R」の関係を統計モデルなどの数理モデルで表現したりします。多くの場合「O」がどのようになっているのか分からないからです。

4. 「S」はないが「R」がある場合

 「R」に関するデータは“キレイか汚いか”を考えなければ、結構溜めている企業が多いようです。売上系のデータは事業をする上で必須ですし、Webのアクセスログもタグを埋め込んでおけば何かしらデータが蓄積されます。センサーデータも、センサーを設置すればデータは次々と発生していきます。

 しかし「S」に関するデータは、本当に意識しないと蓄積されません。例えばマーケティングキャンペーンの情報はパワポなどの資料としては残っているけど、データ分析できる形では蓄積されていない。Webもリスティングの運用やSNS施策をWeb系の広告代理店に丸投げしているため、記録されているようで実は分析できる形にはなっていないのです。

 センサーデータも、例えば生産機器の温度が上がったので職人技でボルトを0.001ミリ単位で調整したとか、生産設備のメンテンナンスや工場の掃除など、何を行ったのかといった記録は具体的に残って...

データ分析

◆ 売上や受注などの結果系データしかない時の分析

 ビッグデータの時代というものの、データを眺めてみれば何がビッグなのでしょうか。少なくとも勝手に溜まるデータがビッグになっている、ということがいえそうです。勝手に大きくなっているデータの代表がWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータです。そしてどのような企業にもあるのが売上や受注などの結果系データです。今回は「売上や受注などの結果系データしかない時、どう分析する」というお話しです。

1. データ分析: 勝手に溜まるデータは、ほぼ汚い

 先ほど勝手にビッグになっているデータの代表としてWebアクセスログやセンサーデータなどを挙げましたが、勝手に溜まるデータの多くは分析する段階でそのままの状態では使えません。なぜなら、データ分析という観点から考えると汚くて使えないからです。汚いものはキレイにすればいいので、時間さえかければ大丈夫です。

2. データ分析: データは溜めることを意識して

 Webアクセスログは比較的キレイに蓄積されますが、それでもそのままでは分析に利用できません。

 分析のための前処理がかなり必要となりますし、WebアクセスログそのものがそのままExcelで扱えるようなデータ形式でないため、そのための処理が必要になります。Webアクセスログを取得する時、タグをWebサイトに埋め込めば済みますが多くの場合、欲しいWebアクセスログを取得するためには、それなりに実装しなければなりません。分析中、実装ミスに気づくこともままあります。

 ビッグデータの時代とはいえ、結局のところデータは意識して溜めないと溜まらない、という現実は今も昔も変わらないということです。

3. C.L.ハルの「S-O-R理論」

 勝手に溜まるデータの多くが、結果系のデータです。例えばWebアクセスログやセンサーデータ、そして売上や受注などの売上に関するデータも、何かしらの結果を反映したデータです。心理学の世界にC.L.ハルの「S-O-R理論」(Stimulus-Organism-Response Theory)という概念があります。非常にシンプルな概念です。

 「S」(Stimulus)は刺激、「O」(Organism)が有機体、「R」(Response)が反応です。データ分析の世界でも、そのままこの概念を活用することができます。

 結果系のデータは「R」になります。「R」が生まれるためには、「S」が必要になります。例えばマーケティングのキャンペーンは「S」で、「O」は消費者、「R」が売上などになります。

 データ分析ではよく「S」と「R」のデータから「S」と「R」の関係を統計モデルなどの数理モデルで表現したりします。多くの場合「O」がどのようになっているのか分からないからです。

4. 「S」はないが「R」がある場合

 「R」に関するデータは“キレイか汚いか”を考えなければ、結構溜めている企業が多いようです。売上系のデータは事業をする上で必須ですし、Webのアクセスログもタグを埋め込んでおけば何かしらデータが蓄積されます。センサーデータも、センサーを設置すればデータは次々と発生していきます。

 しかし「S」に関するデータは、本当に意識しないと蓄積されません。例えばマーケティングキャンペーンの情報はパワポなどの資料としては残っているけど、データ分析できる形では蓄積されていない。Webもリスティングの運用やSNS施策をWeb系の広告代理店に丸投げしているため、記録されているようで実は分析できる形にはなっていないのです。

 センサーデータも、例えば生産機器の温度が上がったので職人技でボルトを0.001ミリ単位で調整したとか、生産設備のメンテンナンスや工場の掃除など、何を行ったのかといった記録は具体的に残っていないのです。

 要するに「S」と「R」の関係について「S」がないため分析できない。そこで「R」のデータしかない場合、データ分析はできないのかという疑問が湧いてくるかもしれません。

5. データ分析: 「通常か異常か」なら見られる

 売上や受注などの「R」に関するデータない時どうするのかというと、ベタな分析方法は異常検知になります。異常検知であれば「R」に関するデータだけでも分析しようと思えばできます。

 通常の「R」の値と比べてどうかをみるだけですが、季節変動やトレンドなど考えるべき要因も多々あります。例えばキャンペーンであれば多くの場合、通常の売上ではなく売上拡大(異常な売上)を手にするためにやります。この為、売上の異常検知でキャンペーン期間中に「異常値」が検出されなければ「キャンペーンは上手くいっていないかもしれない」とも解釈できます。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ分析の初学者と自動機械学習 データ分析講座(その202)

  ここ数年、色々なAutoML(自動機械学習)が登場してきました。有料版で勢いがあるのがDataRobotです。GoogleもIBMもM...

  ここ数年、色々なAutoML(自動機械学習)が登場してきました。有料版で勢いがあるのがDataRobotです。GoogleもIBMもM...


販売力を高めるデータ分析とは データ分析講座(その196)

  ビジネス系のデータ分析・活用(データサイエンス実践)を「ビジネスアナリティクス」という用語で表現したりします。このビジネスアナリティク...

  ビジネス系のデータ分析・活用(データサイエンス実践)を「ビジネスアナリティクス」という用語で表現したりします。このビジネスアナリティク...


IoT「 モノのインターネット化」とは(その1)

1. IoTの目的と狙い  IoTとは、下図のように「Internet of Things」の略で、「モノのインターネット化」と訳します。パソコンなどの...

1. IoTの目的と狙い  IoTとは、下図のように「Internet of Things」の略で、「モノのインターネット化」と訳します。パソコンなどの...


「情報マネジメント一般」の活用事例

もっと見る
電子メール、簡潔過ぎると逆効果

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...


たかがWord、されどWord

 マイクロソフトOfficeはどこでも使われているので、ITリテラシーとしてWordを使えることが求められます。『 Wordが使える 』と言っても、そのレ...

 マイクロソフトOfficeはどこでも使われているので、ITリテラシーとしてWordを使えることが求められます。『 Wordが使える 』と言っても、そのレ...


‐販路開拓に関する問題事例‐ 製品・技術開発力強化策の事例(その19)

 前回の事例その18に続いて解説します。多額の資金と労力を費やして開発した知的財産をどのように活用して販路開拓に結びつけるのか、大変重要な問題ですが、販売...

 前回の事例その18に続いて解説します。多額の資金と労力を費やして開発した知的財産をどのように活用して販路開拓に結びつけるのか、大変重要な問題ですが、販売...