データ活用で肝となるモデルとは データ分析講座(その133)

更新日

投稿日

データ分析

◆ データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない

 モデルと聞くと何を思い浮かべるでしょうか。データサイエンスなどに馴染みのある方であれば、予測モデルや異常検知などの数理モデルなどを思い浮かべることでしょう。データサイエンスを実践する時、つまりデータ分析を実務で活用する際は予測モデルや異常検知などの数理モデル以外のモデルも必要になります。今回は「データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない」というお話しをします。

1、モデル

 データサイエンスなどに馴染みのない方であれば、ファッションモデルやプラモデルを思い浮かべる人も多いと思います。他にもデータモデルやビジネスモデル、プロセスモデルなど、モデルと名の付くものが世の中には多々あります。

(1) モデルの辞書的な意味

 辞書を引いてみるとモデルの意味は、次のようになっています。

  • 模範、手本または標準となるもの。また、今後の範とするために試みられたもの。
  • 模型、また、展示用の見本。
  • ある事象について、諸要素とそれら相互の関係を定式化して表したもの。
  • 美術家・写真家が制作の対象とする人や物。
  • 小説・戯曲などの題材となった実在の人や事件。
  • 機械・自動車などの型式。型。 引用元:デジタル大辞泉

 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

  • 自動車や機械などの型式。
  • 模型。 
  • 商品や事柄の標準となるもの。模範。手本。見本。
  • 画家・彫刻家・写真家などが、製作のとき対象として使う人物。 
  • 小説・戯曲などに描かれる人物の素材になった実在の人。
  • 問題とする事象(対象や諸関係)を模倣し、類比・単純化したもの。また、事象の構造を抽象して論理的に形式化したもの。 引用元:大辞林 第三版

(2) データサイエンス実践(ビジネス活用)的なモデルの定義

 データサイエンスを実践する時、つまりデータ分析を実務で活用するときのモデルはデジタル大辞泉であれば:ある事象について、諸要素とそれら相互の関係を定式化して表したもの。大辞林 第三版であれば:問題とする事象(対象や諸関係)を模倣し、類比・単純化したもの。また、事象の構造を抽象して論理的に形式化したもの。に近いのです。

 個人的には、以下の定義が一番しっくりきます。

 モデルとはある人間にとってのある状況、あるいは状況についての概念(idea) の明示的な解釈(explicit interpretation) である。モデルは数式、記号、あるいは言葉で表すことができるが本質的には、実体、プロセス、属性、およびそれらの関係についての記述(description)である。
引用元:Brian Wilson 著・根来 竜之監訳「システム仕様の分析学―ソフトシステム方法論― 」共立出版(1996年1月)
 私なりに表現すると「モデルとは現実世界を模したもので、何かしらの記号(数式や図など)で表現されたもの」となります。

 ポイントは現実世界を模したもの、記号(数式や図など)で表現されたものです。

2、数理モデル

 例えば、統計解析や機械学習などで登場する数理モデルは、数式という記号でモデルを表現しています。数式で表現された数理モデルは、あくまでも現実世界を模したもので、本物ではありません。したがって「数理モデルとは、現実世界を模したもので、数式という記号で表現されたもの」となります。

(1) 数理モデル以外のモデルには何があるのか

 データサイエンス実践(ビジネス活用)という立ち位置で考えると、数理モデル以外にも必要となるモデルがあります。例えばプロセスモデル(分析プロセスや活用プロセスなど)、モックアップ(レポートやダッシュボードの雛形)、データモデル(DBの雛形)、ビジネスモデル(収益を上げるための仕組みなど)あたりでしょうか。共通しているのは表現する時に数式化や図式化したり、何かしらの記号で表現することでしょう。当然ですが、現実世界そのものではなく、あくまでも現実世界を単純化し模倣したものです。

(2) 2種類のモデル

 モデルには大きく2種類あります。

  • 今現在の現実世界を表現した「As-Isモデル」(典型モデルや近似モデル)
  • こうあるべき現実世界を表現した「To-Beモデル」(理想モデルや規範モデル)

 例えば今現在の業務フローを図示化すれば、それは「As-Isモデル」型のプロセスモデルで、あるべき業務フローを図示化すれ...

データ分析

◆ データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない

 モデルと聞くと何を思い浮かべるでしょうか。データサイエンスなどに馴染みのある方であれば、予測モデルや異常検知などの数理モデルなどを思い浮かべることでしょう。データサイエンスを実践する時、つまりデータ分析を実務で活用する際は予測モデルや異常検知などの数理モデル以外のモデルも必要になります。今回は「データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない」というお話しをします。

1、モデル

 データサイエンスなどに馴染みのない方であれば、ファッションモデルやプラモデルを思い浮かべる人も多いと思います。他にもデータモデルやビジネスモデル、プロセスモデルなど、モデルと名の付くものが世の中には多々あります。

(1) モデルの辞書的な意味

 辞書を引いてみるとモデルの意味は、次のようになっています。

  • 模範、手本または標準となるもの。また、今後の範とするために試みられたもの。
  • 模型、また、展示用の見本。
  • ある事象について、諸要素とそれら相互の関係を定式化して表したもの。
  • 美術家・写真家が制作の対象とする人や物。
  • 小説・戯曲などの題材となった実在の人や事件。
  • 機械・自動車などの型式。型。 引用元:デジタル大辞泉

 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

  • 自動車や機械などの型式。
  • 模型。 
  • 商品や事柄の標準となるもの。模範。手本。見本。
  • 画家・彫刻家・写真家などが、製作のとき対象として使う人物。 
  • 小説・戯曲などに描かれる人物の素材になった実在の人。
  • 問題とする事象(対象や諸関係)を模倣し、類比・単純化したもの。また、事象の構造を抽象して論理的に形式化したもの。 引用元:大辞林 第三版

(2) データサイエンス実践(ビジネス活用)的なモデルの定義

 データサイエンスを実践する時、つまりデータ分析を実務で活用するときのモデルはデジタル大辞泉であれば:ある事象について、諸要素とそれら相互の関係を定式化して表したもの。大辞林 第三版であれば:問題とする事象(対象や諸関係)を模倣し、類比・単純化したもの。また、事象の構造を抽象して論理的に形式化したもの。に近いのです。

 個人的には、以下の定義が一番しっくりきます。

 モデルとはある人間にとってのある状況、あるいは状況についての概念(idea) の明示的な解釈(explicit interpretation) である。モデルは数式、記号、あるいは言葉で表すことができるが本質的には、実体、プロセス、属性、およびそれらの関係についての記述(description)である。
引用元:Brian Wilson 著・根来 竜之監訳「システム仕様の分析学―ソフトシステム方法論― 」共立出版(1996年1月)
 私なりに表現すると「モデルとは現実世界を模したもので、何かしらの記号(数式や図など)で表現されたもの」となります。

 ポイントは現実世界を模したもの、記号(数式や図など)で表現されたものです。

2、数理モデル

 例えば、統計解析や機械学習などで登場する数理モデルは、数式という記号でモデルを表現しています。数式で表現された数理モデルは、あくまでも現実世界を模したもので、本物ではありません。したがって「数理モデルとは、現実世界を模したもので、数式という記号で表現されたもの」となります。

(1) 数理モデル以外のモデルには何があるのか

 データサイエンス実践(ビジネス活用)という立ち位置で考えると、数理モデル以外にも必要となるモデルがあります。例えばプロセスモデル(分析プロセスや活用プロセスなど)、モックアップ(レポートやダッシュボードの雛形)、データモデル(DBの雛形)、ビジネスモデル(収益を上げるための仕組みなど)あたりでしょうか。共通しているのは表現する時に数式化や図式化したり、何かしらの記号で表現することでしょう。当然ですが、現実世界そのものではなく、あくまでも現実世界を単純化し模倣したものです。

(2) 2種類のモデル

 モデルには大きく2種類あります。

  • 今現在の現実世界を表現した「As-Isモデル」(典型モデルや近似モデル)
  • こうあるべき現実世界を表現した「To-Beモデル」(理想モデルや規範モデル)

 例えば今現在の業務フローを図示化すれば、それは「As-Isモデル」型のプロセスモデルで、あるべき業務フローを図示化すれば、それは「To-Beモデル」型のプロセスモデルになります。どちらも現実世界を模したもので、意味づけ(理想か現状か)が異なるだけです。

3、今回のまとめ

 今回は「データ活用で肝となるモデルは、予測モデルや異常検知などの数理モデルだけではない」というお話しをしました。どうしても、データサイエンスやデータ分析、機械学習というものに慣れ親しんでくると、モデルと聞くと数理モデルをイメージしてしまい、世間とズレてきます。モデルという概念には色々な意味があり、数理モデルだけがモデルではありません。

 ファッションモデルやプラモデルもモデルです。データサイエンス実践(ビジネス活用)という立ち位置で考えるとどうでしょうか?データサイエンスやデータ分析、機械学習などを活用しようとする時、数理モデルだけが必要なのではありません。他のモデルも必要になります。

 モデルとは現実世界を模したもので、何かしらの記号(数式や図など)で表現されたものです。データサイエンス実践(ビジネス活用)を考えた時、構築すべきモデルに抜け漏れがないか、確認してみることをお勧めします。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
IoBとは、-活用事例、リスクおよび今後の展開-

  各種センサーデバイスの進化により、身の回りの事象データが取得できるようになってきました。すでにIoT(Internet of Thin...

  各種センサーデバイスの進化により、身の回りの事象データが取得できるようになってきました。すでにIoT(Internet of Thin...


知恵が鍵を握る時代 データ分析講座(その114)

◆ データが鍵を握る時代の到来  データが鍵を握る時代が到来しましたが、拒否反応とともに「データごときに何ができる」というような意見が聞こえてきます...

◆ データが鍵を握る時代の到来  データが鍵を握る時代が到来しましたが、拒否反応とともに「データごときに何ができる」というような意見が聞こえてきます...


データは副産物ではなく血液である データ分析講座(その265)

  IT化を進めれば、その副産物としてデータは発生します。そのデータを保存さえしていれば、その副産物としてのデータを分析し、何かに活用する...

  IT化を進めれば、その副産物としてデータは発生します。そのデータを保存さえしていれば、その副産物としてのデータを分析し、何かに活用する...


「情報マネジメント一般」の活用事例

もっと見る
既存コア技術強化のためのオープン・イノベーション:富士フイルムの例

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...


‐時代の流れを意識した開発テ-マの設定‐  製品・技術開発力強化策の事例(その5)

 前回の事例その4に続いて解説します。時代の流れに沿う開発テ-マとして、最近では、高齢者介護機器、環境関連機器、省エネ機器、情報技術(IT)等に関心が注が...

 前回の事例その4に続いて解説します。時代の流れに沿う開発テ-マとして、最近では、高齢者介護機器、環境関連機器、省エネ機器、情報技術(IT)等に関心が注が...


システムトラブル、誰に相談したら良いか

 最近は、以下のように情報システム開発にかかわるトラブルに悩まされる企業が急増しています。ところが、トラブルが起きた時に誰に相談したらいいかわからなくて困...

 最近は、以下のように情報システム開発にかかわるトラブルに悩まされる企業が急増しています。ところが、トラブルが起きた時に誰に相談したらいいかわからなくて困...