成功確度とデータサイエンス データ分析講座(その226)

投稿日

データ分析

 

【この連載の前回:データ分析講座(その225)課題発見型データ分析と課題解決型データ分析へのリンク】

データサイエンス実践することで、モノゴトの打率(成功確度)を左右することができます。例えば、受注確度を上げるなどの、成功確度を上げる、などです。実際は、それだけではありません。例えば、打率の低いことをコツコツやり続ける、高い打率を下げないようにし続ける、などの実現をサポートします。今回は、「打率(成功確度)とデータサイエンス実践(データ分析・活用)」というお話しをします。

 

【目次】
1.ホームランバッターと言いよりもアベレージヒッター
2.ムラを無くし平準化
3.打率の低いことをコツコツやり続けるのも重要
4.某ECサイトの例

 

1.ホームランバッターと言いよりもアベレージヒッター

データを活用した場合の効果効能の1つに、打率をあげる、というものがあります。野球のお話しをしているわけではありません。ビジネス活動や業務などが上手くいく打率を上げると言うお話しです。

 

要は、データサイエンスに人格を与えたならば、ホームランバッターと言いよりもアベレージヒッターという感じです。ちなみに、私は野球をやったことはありませんが……

 

2.ムラを無くし平準化

データを活用した場合の効果効能の1つに、ムラを無くし平準化する、というものがあります。

 

昔から言われていることですし、先ほどのアベレージヒッターに相通じるものでしょう。高い水準で平準化するのが理想ですが、低い水準で平準化する方が簡単です。高い水準で平準化する場合には、例えばデータで受注確度をある程度高い水準にしてから、その受注確度を維持するということになります。

 

低い水準で平準化する場合には、例えばデータで季節的な受注のムラ(夏売れて、冬売れない)や人的な受注のムラ(営業のAさんの受注確度が極端に低い)などを平準化し維持するという感じです。

 

3.打率の低いことをコツコツやり続けるのも重要

さらに、データを活用することで、打率の低いことをコツコツやり続け成果をだすこともできます。データに対し、電卓や算盤、暗算などだけで立ち向かう人は少ないことでしょう。多くの場合、PCを使います。さらに、データ分析ツールを使うことでしょう。

 

AmazonをはじめとしたECサイトを見てみると、面白いことを実施しています。それは、打率の低いことをコツコツやり続けている、ということです。打率の低いこととは、ECサイトに表示される関連商品の「商品のおすすめ」(レコメンド)です。

 

百貨店などの店員さんの方が、おそらく適切な商品を高確度でお客さまにお勧めできると思います。それに比べると、ECサイトのレコメンドは低確度です。ただ、ECサイトにレコメンドは低角度ですが、24時間いつでも機械的にレコメンドします。人がレコメンドするわけでないので、疲れることもありません。

 

4.某ECサイトの例

何年か前に某ECサイトで、CVR(コンバージョンレート)が2%から3%に上がったことがありました。

 

この例のCVR(コンバージョンレート)の定義は、「購入者数÷セッション数」です。1訪問あたりの購入割合です。CVRが2%とは、100訪問あたり2回購入行動が発生する、ということです。単にレコメンド機能を追加しただけです。人的な工数は、ほとんど発生しません。ユーザから見たら、目当ての商品(潜在的)を探す手間が省けたということでCVRがあがった感じでしょう。

 

CVRが2%から3%に上がると聞くと小さいように感じますが、CVRが1.5倍に上がると言うことは売上が1.5倍になる(客単価が変化しなければですが&...

データ分析

 

【この連載の前回:データ分析講座(その225)課題発見型データ分析と課題解決型データ分析へのリンク】

データサイエンス実践することで、モノゴトの打率(成功確度)を左右することができます。例えば、受注確度を上げるなどの、成功確度を上げる、などです。実際は、それだけではありません。例えば、打率の低いことをコツコツやり続ける、高い打率を下げないようにし続ける、などの実現をサポートします。今回は、「打率(成功確度)とデータサイエンス実践(データ分析・活用)」というお話しをします。

 

【目次】
1.ホームランバッターと言いよりもアベレージヒッター
2.ムラを無くし平準化
3.打率の低いことをコツコツやり続けるのも重要
4.某ECサイトの例

 

1.ホームランバッターと言いよりもアベレージヒッター

データを活用した場合の効果効能の1つに、打率をあげる、というものがあります。野球のお話しをしているわけではありません。ビジネス活動や業務などが上手くいく打率を上げると言うお話しです。

 

要は、データサイエンスに人格を与えたならば、ホームランバッターと言いよりもアベレージヒッターという感じです。ちなみに、私は野球をやったことはありませんが……

 

2.ムラを無くし平準化

データを活用した場合の効果効能の1つに、ムラを無くし平準化する、というものがあります。

 

昔から言われていることですし、先ほどのアベレージヒッターに相通じるものでしょう。高い水準で平準化するのが理想ですが、低い水準で平準化する方が簡単です。高い水準で平準化する場合には、例えばデータで受注確度をある程度高い水準にしてから、その受注確度を維持するということになります。

 

低い水準で平準化する場合には、例えばデータで季節的な受注のムラ(夏売れて、冬売れない)や人的な受注のムラ(営業のAさんの受注確度が極端に低い)などを平準化し維持するという感じです。

 

3.打率の低いことをコツコツやり続けるのも重要

さらに、データを活用することで、打率の低いことをコツコツやり続け成果をだすこともできます。データに対し、電卓や算盤、暗算などだけで立ち向かう人は少ないことでしょう。多くの場合、PCを使います。さらに、データ分析ツールを使うことでしょう。

 

AmazonをはじめとしたECサイトを見てみると、面白いことを実施しています。それは、打率の低いことをコツコツやり続けている、ということです。打率の低いこととは、ECサイトに表示される関連商品の「商品のおすすめ」(レコメンド)です。

 

百貨店などの店員さんの方が、おそらく適切な商品を高確度でお客さまにお勧めできると思います。それに比べると、ECサイトのレコメンドは低確度です。ただ、ECサイトにレコメンドは低角度ですが、24時間いつでも機械的にレコメンドします。人がレコメンドするわけでないので、疲れることもありません。

 

4.某ECサイトの例

何年か前に某ECサイトで、CVR(コンバージョンレート)が2%から3%に上がったことがありました。

 

この例のCVR(コンバージョンレート)の定義は、「購入者数÷セッション数」です。1訪問あたりの購入割合です。CVRが2%とは、100訪問あたり2回購入行動が発生する、ということです。単にレコメンド機能を追加しただけです。人的な工数は、ほとんど発生しません。ユーザから見たら、目当ての商品(潜在的)を探す手間が省けたということでCVRがあがった感じでしょう。

 

CVRが2%から3%に上がると聞くと小さいように感じますが、CVRが1.5倍に上がると言うことは売上が1.5倍になる(客単価が変化しなければですが……)ということです。例えば、月間10億円のECサイトであれば、月間15億円になるということです。

 

データを活用した場合の効果効能の1つに、ムラを無くし平準化する、というものがあります。この場合の平準化には、高い水準で平準化することだけでなく、低い水準で平準化することも含まれます。

 

要するに、データを上手く活用することで……

  • 低い打率を上げる
  • 打率の低いことをコツコツやり続ける
  • 高い打率を下げないようにし続ける

……ということが可能になります。

 

次回に続きます。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
非構造化データにまで拡大! ビッグデータの活用で変わるものづくり

 近年、大量データを分析して、顧客や市場、あるいは自社の現状を定量的に把握し、そこから人間の勘だけでは分からない新たな知見を見出し、それをマーケティングや...

 近年、大量データを分析して、顧客や市場、あるいは自社の現状を定量的に把握し、そこから人間の勘だけでは分からない新たな知見を見出し、それをマーケティングや...


データとドメインを結びつけ価値創造する者 データ分析講座(その129)

◆ データエコノミーな時代に必須なデータサイエンス  ビッグデータの時代と呼ばれて久しいようです。企業活動や人の行動などのデータが、日々大量に生み出...

◆ データエコノミーな時代に必須なデータサイエンス  ビッグデータの時代と呼ばれて久しいようです。企業活動や人の行動などのデータが、日々大量に生み出...


ビジネス効率化の鍵、コスト感応学習: リスクとリターンを見極める(その2):データ分析講座(その362)

前回のビジネス効率化の鍵、コスト感応学習: リスクとリターンを見極める(その1):データ分析講座(その361)の続きです。 【目次】 ...

前回のビジネス効率化の鍵、コスト感応学習: リスクとリターンを見極める(その1):データ分析講座(その361)の続きです。 【目次】 ...


「情報マネジメント一般」の活用事例

もっと見る
‐情報収集で配慮すべき事項(第2回)‐  製品・技術開発力強化策の事例(その10)

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...


ソーシャルメディアデータの解析事例:異分野研究から得られる共通した目的とは

 2020年、コロナウィルス感染の問題が大きくなり始めた頃、少人数の開催ということで、ソーシャルメディアデータ解析を専門にされている先生の講演会を聞く...

 2020年、コロナウィルス感染の問題が大きくなり始めた頃、少人数の開催ということで、ソーシャルメディアデータ解析を専門にされている先生の講演会を聞く...


‐クレ-ム情報を開発に活用‐  製品・技術開発力強化策の事例(その13)

 前回の事例その12に続いて解説します。顧客から出されたクレ-ムは、技術開発や、関連製品の開発の可能性を潜在させている場合が多いようです。その視点からクレ...

 前回の事例その12に続いて解説します。顧客から出されたクレ-ムは、技術開発や、関連製品の開発の可能性を潜在させている場合が多いようです。その視点からクレ...