テーマ候補の探し方 データ分析講座(その137)

更新日

投稿日

データ分析

◆ データ分析・活用のテーマ候補の探し方

 ビジネスにおけるデータ活用は、あくまでも課題解決手段の一つに過ぎません。主役ではなく脇役です。そもそも、ビジネス上の課題を解決するのにデータは必須ではありません。

 しかし「データを使って何かしろ」という感じになり、データで出来ることを探し始める人も少なくありません。その典型的な問いが「このデータで何かできませんか?」。データのために、活躍の場を探し与えるかのようです。では、どうすればいいのか、今回は「データ分析・活用のテーマ候補の探し方」というお話しをします。



1、データの存在を忘れて考えよう

 「データを使って何かしろ」という感じになっても、データで出来ることを探し始めてはいけません。なぜならば、データの可能性を殺してしまうことがあるからです。データの可能性を殺すとは、データで課題解決できた何かを見つけられず、データで解決する機会を奪い去ることを意味します。そのためまずは「データでビジネス課題を解決しよう」という考え方を捨てます。データの存在を忘れて、解決すべきビジネス課題を考えていきます。

2、データを活用するかどうかに関係なくビジネス課題を洗い出そう

 次に行うことは、データを活用するかどうかに関係なくビジネス課題を洗い出せばいいのです。データを使うという制約が外されることで、色々なビジネス課題(ビジネスの「お困りごと」)が洗い出されることでしょう。

 ちなみに「ビジネス課題」をビジネスの「お困りごと」と表現しているのは、意図的に表現しています。理由は「ビジネス課題を書き出してください」と現場に頼むよりも「仕事のお困りごとを書き出してください」と頼んだほうが、たくさんのビジネス課題(ビジネスの「お困りごと」)が出てくるからです。これは、あくまでも私の経験上のお話しです。

3、そして、データを使った方が良さそうなテーマを探す

 データを活用するかどうかに関係なくビジネス課題を洗い出した後にすべきことは、当然ですが「データを使ったほうがよさそうなテーマを探す」ということになります。整理しますと次のようになります。

  • データを活用するかどうかに関係なくビジネス課題を洗い出す
  • データを使ったほうが良さそうなテーマを探す

 これが、分析テーマの「候補洗い出し」の考え方です。そして、本当にデータで解決できそうであれば、そのデータでビジネス課題を解決すればいいのです。ポイントは「最初は、データの存在を忘れて、解決すべきビジネス課題を考える」というところです。このことで「データで課題解決できた何かを見つけられず、データで解決する機会を奪い去る」ことをある程度避けることができます。

4、逆算アプローチで、データを使うべきかどうかを考えよう

 ビジネスの「お困りごと」である「ビジネス課題」を、データを活用するかどうかに関係なく洗い出したら、次にデータを使った方が良さそうなテーマを探します。探し方は非常にシンプルで、逆算アプローチで探していきます。

 例えば、データを活用するかどうかに関係なく洗い出したビジネス課題に対し、以下の逆算アプローチで、データを活用したほうが良さそうかを考えていきます。

  • Step.1 課題のBefore(現状、As-Is)→After(解決された状態、To-Be)を考える
  • Step.2 Before→Afterの変化を起こすのに何が必要なのかを考える
  • Step.3 仮にデータ分析が必要ならば、どのような分析が必要かを考える
  • Step.4 その分析をするために、どのようなデータが必要になるのかを考える
  • Step.5 その必要なデータの中で、すでに使えるデータとそうでないデータを考える

 このステップを通すことで、その課題にとってデータが必要かどうかが分かります。さらに、そのようなデータが存在するのかも分かります。

5、ビジネス課題3つのタイプ

 データを活用するかどうかに関係なく洗い出したビジネス課題に対し、先ほどのステップをと通すことで、ビジネス課題が次の3つのタイプに大別されます。

  • タイプ1 データ分析を使う必要がまったくない課題
  • タイプ2 データ分析をフル活用するほうがいい課題
  • タイプ3 ちょっとだけデータ分析の力を借りるほうがいい課題

 私の経験上「データ分析をフル活用するほうがいい課題」はほとんどありません。大半は「ちょっとだけデータ分析の力を借りたほうがいい課題」です。しかし「企業内で、データ分析で何かやるぞ!」という声が上がった場合、この「データ分析をフル活用したほうがいい課題」をいきな...

データ分析

◆ データ分析・活用のテーマ候補の探し方

 ビジネスにおけるデータ活用は、あくまでも課題解決手段の一つに過ぎません。主役ではなく脇役です。そもそも、ビジネス上の課題を解決するのにデータは必須ではありません。

 しかし「データを使って何かしろ」という感じになり、データで出来ることを探し始める人も少なくありません。その典型的な問いが「このデータで何かできませんか?」。データのために、活躍の場を探し与えるかのようです。では、どうすればいいのか、今回は「データ分析・活用のテーマ候補の探し方」というお話しをします。



1、データの存在を忘れて考えよう

 「データを使って何かしろ」という感じになっても、データで出来ることを探し始めてはいけません。なぜならば、データの可能性を殺してしまうことがあるからです。データの可能性を殺すとは、データで課題解決できた何かを見つけられず、データで解決する機会を奪い去ることを意味します。そのためまずは「データでビジネス課題を解決しよう」という考え方を捨てます。データの存在を忘れて、解決すべきビジネス課題を考えていきます。

2、データを活用するかどうかに関係なくビジネス課題を洗い出そう

 次に行うことは、データを活用するかどうかに関係なくビジネス課題を洗い出せばいいのです。データを使うという制約が外されることで、色々なビジネス課題(ビジネスの「お困りごと」)が洗い出されることでしょう。

 ちなみに「ビジネス課題」をビジネスの「お困りごと」と表現しているのは、意図的に表現しています。理由は「ビジネス課題を書き出してください」と現場に頼むよりも「仕事のお困りごとを書き出してください」と頼んだほうが、たくさんのビジネス課題(ビジネスの「お困りごと」)が出てくるからです。これは、あくまでも私の経験上のお話しです。

3、そして、データを使った方が良さそうなテーマを探す

 データを活用するかどうかに関係なくビジネス課題を洗い出した後にすべきことは、当然ですが「データを使ったほうがよさそうなテーマを探す」ということになります。整理しますと次のようになります。

  • データを活用するかどうかに関係なくビジネス課題を洗い出す
  • データを使ったほうが良さそうなテーマを探す

 これが、分析テーマの「候補洗い出し」の考え方です。そして、本当にデータで解決できそうであれば、そのデータでビジネス課題を解決すればいいのです。ポイントは「最初は、データの存在を忘れて、解決すべきビジネス課題を考える」というところです。このことで「データで課題解決できた何かを見つけられず、データで解決する機会を奪い去る」ことをある程度避けることができます。

4、逆算アプローチで、データを使うべきかどうかを考えよう

 ビジネスの「お困りごと」である「ビジネス課題」を、データを活用するかどうかに関係なく洗い出したら、次にデータを使った方が良さそうなテーマを探します。探し方は非常にシンプルで、逆算アプローチで探していきます。

 例えば、データを活用するかどうかに関係なく洗い出したビジネス課題に対し、以下の逆算アプローチで、データを活用したほうが良さそうかを考えていきます。

  • Step.1 課題のBefore(現状、As-Is)→After(解決された状態、To-Be)を考える
  • Step.2 Before→Afterの変化を起こすのに何が必要なのかを考える
  • Step.3 仮にデータ分析が必要ならば、どのような分析が必要かを考える
  • Step.4 その分析をするために、どのようなデータが必要になるのかを考える
  • Step.5 その必要なデータの中で、すでに使えるデータとそうでないデータを考える

 このステップを通すことで、その課題にとってデータが必要かどうかが分かります。さらに、そのようなデータが存在するのかも分かります。

5、ビジネス課題3つのタイプ

 データを活用するかどうかに関係なく洗い出したビジネス課題に対し、先ほどのステップをと通すことで、ビジネス課題が次の3つのタイプに大別されます。

  • タイプ1 データ分析を使う必要がまったくない課題
  • タイプ2 データ分析をフル活用するほうがいい課題
  • タイプ3 ちょっとだけデータ分析の力を借りるほうがいい課題

 私の経験上「データ分析をフル活用するほうがいい課題」はほとんどありません。大半は「ちょっとだけデータ分析の力を借りたほうがいい課題」です。しかし「企業内で、データ分析で何かやるぞ!」という声が上がった場合、この「データ分析をフル活用したほうがいい課題」をいきなり探すところから始めることが多い気がします。

6、今回のまとめ

 今回は「データ分析・活用のテーマ候補の探し方」というお話しをしました。ビジネス課題をデータ分析で解決しようと考えた時すべきことは「データの存在を忘れて考える」です。「データを使って何かしろ」という感じになったとき、データで出来ることを探し始めてはいけません。

 まずは、データを活用するかどうかに関係なくビジネス課題を洗い出します。その後、データを使ったほうが良さそうなテーマを探すのです。「企業内で、データ分析で何かやるぞ」という声が上がった場合「データ分析をフル活用したほうがいい課題」をいきなり探すところから始めることが多い気がしますが、簡単には見つけられません。見つかったらラッキーという感じです。

 大半は「ちょっとだけデータ分析の力を借りたほうがいい課題」です。したがって、ビジネス課題をデータ分析で解決しようと考えた時のテーマ候補は「ちょっとだけデータ分析の力を借りる方がいい課題」が大半になります。この中で、容易にビジネスインパクトを得られる課題を分析テーマとして選択すればいいのです。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ活用には製販分離は大きな壁 データ分析講座(その70)

◆ 製造業のデータ活用の壁 : 製販分離の効率化が壁になり不効率を生み出す  製造業であれ ITベンダーであれ、ある一定規模の企業体になると、どうし...

◆ 製造業のデータ活用の壁 : 製販分離の効率化が壁になり不効率を生み出す  製造業であれ ITベンダーであれ、ある一定規模の企業体になると、どうし...


ダイナミックプライシングとは データ分析講座(その181)

    ◆ 新聞売り子問題とダイナミックプライシング  データ活用が進む中、ダイナミックプライシングの動きが活発化しています。ダ...

    ◆ 新聞売り子問題とダイナミックプライシング  データ活用が進む中、ダイナミックプライシングの動きが活発化しています。ダ...


5つのデータ分析 データ分析講座(その224)

  【この連載の前回:データ分析講座(その223)数値予測は9つのシナリオで実施するへのリンク】 ◆関連解説『情報マネジメントとは』 ...

  【この連載の前回:データ分析講座(その223)数値予測は9つのシナリオで実施するへのリンク】 ◆関連解説『情報マネジメントとは』 ...


「情報マネジメント一般」の活用事例

もっと見る
‐情報収集で配慮すべき事項(第1回)‐  製品・技術開発力強化策の事例(その9)

 前回の事例その8に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

 前回の事例その8に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...


‐技術開発の目標について 第2回‐  製品・技術開発力強化策の事例(その16)

 技術開発の目標を解説する以下の項目4点について、前回は、1と2を解説しましたので、今回は、第2回として、3と4を記述します。          1....

 技術開発の目標を解説する以下の項目4点について、前回は、1と2を解説しましたので、今回は、第2回として、3と4を記述します。          1....


個票データの共用化でコストダウン

 データ解析の効率は、生データとその整理の仕方で大きく異なると言えます。 例えば、アンケート結果は単なる生データであり、そのままでは解析出来ません。解析の...

 データ解析の効率は、生データとその整理の仕方で大きく異なると言えます。 例えば、アンケート結果は単なる生データであり、そのままでは解析出来ません。解析の...