AI技術と現場の融合とは データ分析講座(その182)

更新日

投稿日

データ分析

 

◆ データサイエンス×感覚が、より良い未来をもたらす

 「AIとカラー化した写真でよみがえる戦前・戦争」 (光文社新書、2020/7/15)という書籍があります。AI技術でモノクロ写真をカラー化し、そのカラー化を、その時代を知る人の記憶などを手掛かりに修正する、という感じのものです。まさに、データ分析・活用の肝の部分を分かりやすい形で体現しているなと、感じました。今回は「データサイエンス×感覚が、より良い未来をもたらす」というお話しをします。

【目次】

1.所詮、データは世の中の一部分でしかない
(1)人による修正が必要になるのは必然である
(2)データ分析や数理モデルに、現場感による修正は必須
2.未来を見通すには、データサイエンス×感覚
3.データサイエンティストや機械学習エンジニアの感覚ではない
4.今回のまとめ

 

1. データ分析:所詮、データは世の中の一部分でしかない

 当たり前のことですが、データは所詮過去の記録に過ぎず、しかも極一部分を切り取ったものです。戦前・戦争のモノクロ写真も、写真という形で記録されたデータです。アナログなものでもデータです。アナログなデータを、デジタル化し、構築した数理モデルで処理することで、色付けするのでしょう。

 最近では、数理モデルで処理すると、AI処理と呼ぶようです。

(1) 人による修正が必要になるのは必然である

 AI技術でモノクロ写真をカラー化し、そのカラー化を、その時代を知る人の記憶などを手掛かりに修正。モノクロ写真をデジタル化し、そのデジタル化されたモノクロ写真を、ある数理モデルで処理することで、デジタル化されたカラー写真になるようです。

 しかし、そのカラー写真の色が正しいかどうかは、当時を知る人(現場の人)しか判断できません。モノクロ写真をカラー化する数理モデルだけでなく、どのような数理モデルでも、実は現場を知る人しか最終的な善し悪しは判断できません。モノクロ写真をカラー化する数理モデルの善し悪しを、現場を知る人しか判断できないのと同じです。

 本当に再現されたどうかやイメージに近いかどうかなどは、現場を知る人しか判断できないからです。現場の人に見てもらうと、多くの場合、修正が必要になります。AI技術と現場の融合です。

(2) データ分析や数理モデルに、現場感による修正は必須

 AI技術というと大げさなので、数理モデルに現場感を投入する、とった方がいいかもしれません。現場感が、取得したデータ以上の何かをもたらしてくれるということです。データが汚い、十分な量のデータがない、データ同士が結びつかないなど、色々なデータに関する問題があったとしても、現場感を投入することで突破できることがあります。

 要は、過去の一部分を切り取ったデータを補完するために現場感を融合する、という感じです。

 

2. データ分析:未来を見通すには、データサイエンス×感覚

 特に、未来を予測する場合には、感覚を投入することが必要になります。なぜならば、データの存在しない未来を予測するからです。過去の一部分を切り取ったデータを補完するために現場感を融合する場合には、一部分とはいえデータがあるだけましです。

 未来を予測する場合には、まったくデータが存在しないわけですから、人による感覚による修正は必須でしょう。予測モデルなどで予測した結果をもとに、現場感などでどうなりそうかを検討し、何かしらの施策を導き出すということです。

 予測モデルなどで予測した結果の通りに、現実は起こることはなく、起こってもたまたまです。要するに、未来を見通すには「データサイエンス×感覚」が必須なのです。

 

3. データ分析:データサイエンティストや機械学習エンジニアの感覚ではない

 最後に1つだけ注意点があります。

「データサイエンス×感覚」の「感覚」とは、データ分析をしたり数理モデルを構築したデータサイエンティストや機械学習エンジニアの感覚ではないです。AI技術でモノクロ写真をカラー化し、そのカラー化を、その時代を知る人の記憶などを手掛かりに修正したのと同じです。

 データサイエンティストや機械学習エンジニアの感覚を融合してもいいですが、主に融合するのは現場を知る人の感覚です。

 

4. 今回のまとめ

 今回は「データサイエンス×感覚が、より良い未来をもたらす」というお話しをしました。「AIとカラー化した写真でよみがえる戦前・戦争」 (光文社新書、2020/7/15)という書籍があります。AI技術でモノクロ写真をカラー化し、そのカラー化を、その時代を知る人の記憶などを手掛かりに修正する、という感じのものです。まさに、データ分析・活用の肝の部分を分かりやすい形で体現しているなと...

データ分析

 

◆ データサイエンス×感覚が、より良い未来をもたらす

 「AIとカラー化した写真でよみがえる戦前・戦争」 (光文社新書、2020/7/15)という書籍があります。AI技術でモノクロ写真をカラー化し、そのカラー化を、その時代を知る人の記憶などを手掛かりに修正する、という感じのものです。まさに、データ分析・活用の肝の部分を分かりやすい形で体現しているなと、感じました。今回は「データサイエンス×感覚が、より良い未来をもたらす」というお話しをします。

【目次】

1.所詮、データは世の中の一部分でしかない
(1)人による修正が必要になるのは必然である
(2)データ分析や数理モデルに、現場感による修正は必須
2.未来を見通すには、データサイエンス×感覚
3.データサイエンティストや機械学習エンジニアの感覚ではない
4.今回のまとめ

 

1. データ分析:所詮、データは世の中の一部分でしかない

 当たり前のことですが、データは所詮過去の記録に過ぎず、しかも極一部分を切り取ったものです。戦前・戦争のモノクロ写真も、写真という形で記録されたデータです。アナログなものでもデータです。アナログなデータを、デジタル化し、構築した数理モデルで処理することで、色付けするのでしょう。

 最近では、数理モデルで処理すると、AI処理と呼ぶようです。

(1) 人による修正が必要になるのは必然である

 AI技術でモノクロ写真をカラー化し、そのカラー化を、その時代を知る人の記憶などを手掛かりに修正。モノクロ写真をデジタル化し、そのデジタル化されたモノクロ写真を、ある数理モデルで処理することで、デジタル化されたカラー写真になるようです。

 しかし、そのカラー写真の色が正しいかどうかは、当時を知る人(現場の人)しか判断できません。モノクロ写真をカラー化する数理モデルだけでなく、どのような数理モデルでも、実は現場を知る人しか最終的な善し悪しは判断できません。モノクロ写真をカラー化する数理モデルの善し悪しを、現場を知る人しか判断できないのと同じです。

 本当に再現されたどうかやイメージに近いかどうかなどは、現場を知る人しか判断できないからです。現場の人に見てもらうと、多くの場合、修正が必要になります。AI技術と現場の融合です。

(2) データ分析や数理モデルに、現場感による修正は必須

 AI技術というと大げさなので、数理モデルに現場感を投入する、とった方がいいかもしれません。現場感が、取得したデータ以上の何かをもたらしてくれるということです。データが汚い、十分な量のデータがない、データ同士が結びつかないなど、色々なデータに関する問題があったとしても、現場感を投入することで突破できることがあります。

 要は、過去の一部分を切り取ったデータを補完するために現場感を融合する、という感じです。

 

2. データ分析:未来を見通すには、データサイエンス×感覚

 特に、未来を予測する場合には、感覚を投入することが必要になります。なぜならば、データの存在しない未来を予測するからです。過去の一部分を切り取ったデータを補完するために現場感を融合する場合には、一部分とはいえデータがあるだけましです。

 未来を予測する場合には、まったくデータが存在しないわけですから、人による感覚による修正は必須でしょう。予測モデルなどで予測した結果をもとに、現場感などでどうなりそうかを検討し、何かしらの施策を導き出すということです。

 予測モデルなどで予測した結果の通りに、現実は起こることはなく、起こってもたまたまです。要するに、未来を見通すには「データサイエンス×感覚」が必須なのです。

 

3. データ分析:データサイエンティストや機械学習エンジニアの感覚ではない

 最後に1つだけ注意点があります。

「データサイエンス×感覚」の「感覚」とは、データ分析をしたり数理モデルを構築したデータサイエンティストや機械学習エンジニアの感覚ではないです。AI技術でモノクロ写真をカラー化し、そのカラー化を、その時代を知る人の記憶などを手掛かりに修正したのと同じです。

 データサイエンティストや機械学習エンジニアの感覚を融合してもいいですが、主に融合するのは現場を知る人の感覚です。

 

4. 今回のまとめ

 今回は「データサイエンス×感覚が、より良い未来をもたらす」というお話しをしました。「AIとカラー化した写真でよみがえる戦前・戦争」 (光文社新書、2020/7/15)という書籍があります。AI技術でモノクロ写真をカラー化し、そのカラー化を、その時代を知る人の記憶などを手掛かりに修正する、という感じのものです。まさに、データ分析・活用の肝の部分を分かりやすい形で体現しているなと、感じました。

 モノクロ写真をカラー化する数理モデルだけでなく、どのような数理モデルでも、実は現場を知る人しか最終的な善し悪しは判断できません。モノクロ写真をカラー化する数理モデルの善し悪しを、現場を知る人しか判断できないのと同じです。本当に再現されたどうかやイメージに近いかどうかなどは、現場を知る人しか判断できないからです。現場の人に見てもらうと、多くの場合、修正が必要になります。

 AI技術と現場の融合です。特に、未来を予測する場合には、感覚を投入することが必要になります。なぜならば、データの存在しない未来を予測するからです。データサイエンティストや機械学習エンジニアの感覚を融合してもいいですが、主に融合するのは現場を知る人の感覚です。

 要するに、予測モデルなどで予測した結果をもとに、現場感などでどうなりそうかを検討し、何かしらの施策を導き出すということです。予測モデルなどで予測した結果の通りに、現実は起こることはなく、起こってもたまたまです。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データサイエンスチームにリカードの比較優位説を取り入れろ:データ分析講座(その353)

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! データサイエンスの世界は常に進化し、そのダイ...

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! データサイエンスの世界は常に進化し、そのダイ...


特徴量エンジニアリング、学習・テストデータの分割:データ分析講座(その349)

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 機械学習モデルを構築する際、利用可能なデータ...

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 機械学習モデルを構築する際、利用可能なデータ...


ビジネスにおけるハイパーパラメータ最適化(その3):データ分析講座(その365)

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 前回のビジネスにおけるハイパーパラメータ最適...

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 前回のビジネスにおけるハイパーパラメータ最適...


「情報マネジメント一般」の活用事例

もっと見る
Excelの帳票を見直そう

 オフィス業務においては、マイクロソフトOfficeがデファクトスタンダードになっています。とりわけ活用されているのはExcelでしょう。Excelを使う...

 オフィス業務においては、マイクロソフトOfficeがデファクトスタンダードになっています。とりわけ活用されているのはExcelでしょう。Excelを使う...


人的資源マネジメント:製品開発の滞留を引き起こすファイルとは(その2)

 今回は、PDM/PLMに代表される製品開発業務のIT化をどのように考え、進めるのがよいのかについて解説します。    前回まで続けていたテ...

 今回は、PDM/PLMに代表される製品開発業務のIT化をどのように考え、進めるのがよいのかについて解説します。    前回まで続けていたテ...


‐時代の流れを意識した開発テ-マの設定‐  製品・技術開発力強化策の事例(その5)

 前回の事例その4に続いて解説します。時代の流れに沿う開発テ-マとして、最近では、高齢者介護機器、環境関連機器、省エネ機器、情報技術(IT)等に関心が注が...

 前回の事例その4に続いて解説します。時代の流れに沿う開発テ-マとして、最近では、高齢者介護機器、環境関連機器、省エネ機器、情報技術(IT)等に関心が注が...