データ分析・活用のテーマ選びとは データ分析講座(その177)

更新日

投稿日

 

 

◆ データ分析:修羅の道を歩むデータサイエンティスト。

 世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをします。

【目次】
1. テーマ選びの2つの軸
 (1)筋のいいテーマ
 (2)筋の悪いテーマ
2. いばらの道で傷だらけになる
 (1)意外とおいしい
3. 今回のまとめ

 

1. データ分析:テーマ選びの2つの軸

 

データサイエンス

 

 データ分析・活用(データサイエンス実践)のテーマを選ぶとき、例えば次の2つの軸で考えていきます。容易性(難易⇔容易)インパクト(小⇔大)容易性(難易⇔容易)は、データ分析・活用(データサイエンス実践)の実現の容易性です。データが取得しやすいのか、分析しやすいのか、現場で容易に活用してくれそうなのか、という3つの視点があります。

 インパクト(小⇔大)は、よくあるのが利益の額です。他には、コストダウン額の大きさや売上の額の大きさなどです。

(1)筋のいいテーマ

 

データサイエンス

 

 筋のいいテーマとは、容易かつインパクトの大きいテーマです。夢のようなテーマです。

 このようなおいしいテーマを、データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの理由で、やらないでほったらかしにしているケースも少なくありません。不思議なことです。

(2)筋の悪いテーマ

 

データサイエンス

 

 筋の悪いテーマとは、先ほどの筋のいいテーマの真逆で、難しいのにインパクトの小さいテーマです。悪夢のようなテーマです。このような悪夢なようなテーマにチャレンジし、なかなか成果を出せないケースもたまに見受けられます。恐ろしいことです。

 

2. データ分析:いばらの道で傷だらけになる

 

データサイエンス

 

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。
不思議なことです。難しいテーマに挑み、傷だらけになりながら、途中でやめることもせず、続けているケースもあります。

 よくよく話しを聞いてみると、「データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない」といった感じが背景にある不思議な選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。そこを敢えて、難易度の高いテーマを選ぶのですから大変です。

(1)意外とおいしい

 

データ分析

 

 意外とおいしいテーマは、容易だがインパクトの小さなテーマです。小粒ですが、容易なためすぐに成果が出ます。小さいな成果も、塵も積もれば山となる、ということで、それなりの成果になります。しかも、簡単ですぐ成果がでるため、データ分析人財(データサイエンス人財)を育成するのに好都合です。

 

3. データ分析:今回のまとめ

 今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをしました。世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。


 データ分析・活...

 

 

◆ データ分析:修羅の道を歩むデータサイエンティスト。

 世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをします。

【目次】
1. テーマ選びの2つの軸
 (1)筋のいいテーマ
 (2)筋の悪いテーマ
2. いばらの道で傷だらけになる
 (1)意外とおいしい
3. 今回のまとめ

 

1. データ分析:テーマ選びの2つの軸

 

データサイエンス

 

 データ分析・活用(データサイエンス実践)のテーマを選ぶとき、例えば次の2つの軸で考えていきます。容易性(難易⇔容易)インパクト(小⇔大)容易性(難易⇔容易)は、データ分析・活用(データサイエンス実践)の実現の容易性です。データが取得しやすいのか、分析しやすいのか、現場で容易に活用してくれそうなのか、という3つの視点があります。

 インパクト(小⇔大)は、よくあるのが利益の額です。他には、コストダウン額の大きさや売上の額の大きさなどです。

(1)筋のいいテーマ

 

データサイエンス

 

 筋のいいテーマとは、容易かつインパクトの大きいテーマです。夢のようなテーマです。

 このようなおいしいテーマを、データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの理由で、やらないでほったらかしにしているケースも少なくありません。不思議なことです。

(2)筋の悪いテーマ

 

データサイエンス

 

 筋の悪いテーマとは、先ほどの筋のいいテーマの真逆で、難しいのにインパクトの小さいテーマです。悪夢のようなテーマです。このような悪夢なようなテーマにチャレンジし、なかなか成果を出せないケースもたまに見受けられます。恐ろしいことです。

 

2. データ分析:いばらの道で傷だらけになる

 

データサイエンス

 

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。
不思議なことです。難しいテーマに挑み、傷だらけになりながら、途中でやめることもせず、続けているケースもあります。

 よくよく話しを聞いてみると、「データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない」といった感じが背景にある不思議な選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。そこを敢えて、難易度の高いテーマを選ぶのですから大変です。

(1)意外とおいしい

 

データ分析

 

 意外とおいしいテーマは、容易だがインパクトの小さなテーマです。小粒ですが、容易なためすぐに成果が出ます。小さいな成果も、塵も積もれば山となる、ということで、それなりの成果になります。しかも、簡単ですぐ成果がでるため、データ分析人財(データサイエンス人財)を育成するのに好都合です。

 

3. データ分析:今回のまとめ

 今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをしました。世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。


 データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。

 最初に選ぶべきは、容易かつインパクトの大きなテーマ、次に選ぶのが容易だけどインパクトの小さなテーマです。難易度の高いテーマに挑むためにデータ分析・活用(データサイエンス実践)があるわけではありません。成果を上げられなければ、そのデータ分析・活用(データサイエンス実践)に価値はありませんし、価値があるものだと認めてもらえません。

 データ分析・活用(データサイエンス実践)のテーマ選びは、存在するかどうか分からぬ桃源郷を目指すよりも、確実な足元に転がっている幸福を優先させた方がいいでしょう。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
コーホートを活用した受注予測モデルとは データ分析講座(その108)

  ◆ 営業や販売のCRM系のデータ分析、どうしてもコーホート的になる  分析用データはどのような視点で分析するかによりデータセットの呼び名...

  ◆ 営業や販売のCRM系のデータ分析、どうしてもコーホート的になる  分析用データはどのような視点で分析するかによりデータセットの呼び名...


データサイエンスで成果を出さないときの共通点 データ分析講座(その120)

◆ 目的を明確にしてもデータサイエンスで失敗するのか  データサイエンスは「目的を明確にすること」が大事だとよくいわれます。これはデータサイエンスに...

◆ 目的を明確にしてもデータサイエンスで失敗するのか  データサイエンスは「目的を明確にすること」が大事だとよくいわれます。これはデータサイエンスに...


「比較のための因果推論」の手法3選:データ分析講座(その328)

  ビジネスシーンで「比較のための因果推論」をすることは、意識していないだけで、実は意外と多いのです。例えば、新製品の価格設定を検討してい...

  ビジネスシーンで「比較のための因果推論」をすることは、意識していないだけで、実は意外と多いのです。例えば、新製品の価格設定を検討してい...


「情報マネジメント一般」の活用事例

もっと見る
既存コア技術強化のためのオープン・イノベーション:富士フイルムの例

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...

 2015年7月20日号の日経ビジネスに、富士フイルムの特集が掲載されました。富士フイルムは、既存コア技術強化のためにオープン・イノベーションを果敢に...


中小製造業とIoTの波

 「IoT(アイオーティー)」の波が、中小製造業にどのような影響をおよぼすのか、具体的にどのような変化がこの業界に訪れるのかについて、解説します。   ...

 「IoT(アイオーティー)」の波が、中小製造業にどのような影響をおよぼすのか、具体的にどのような変化がこの業界に訪れるのかについて、解説します。   ...


‐販路開拓に関する問題事例‐ 製品・技術開発力強化策の事例(その19)

 前回の事例その18に続いて解説します。多額の資金と労力を費やして開発した知的財産をどのように活用して販路開拓に結びつけるのか、大変重要な問題ですが、販売...

 前回の事例その18に続いて解説します。多額の資金と労力を費やして開発した知的財産をどのように活用して販路開拓に結びつけるのか、大変重要な問題ですが、販売...