データ分析・活用のテーマ選びとは データ分析講座(その177)

更新日

投稿日

 

 

◆ データ分析:修羅の道を歩むデータサイエンティスト。

 世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをします。

【目次】
1. テーマ選びの2つの軸
 (1)筋のいいテーマ
 (2)筋の悪いテーマ
2. いばらの道で傷だらけになる
 (1)意外とおいしい
3. 今回のまとめ

 

1. データ分析:テーマ選びの2つの軸

 

データサイエンス

 

 データ分析・活用(データサイエンス実践)のテーマを選ぶとき、例えば次の2つの軸で考えていきます。容易性(難易⇔容易)インパクト(小⇔大)容易性(難易⇔容易)は、データ分析・活用(データサイエンス実践)の実現の容易性です。データが取得しやすいのか、分析しやすいのか、現場で容易に活用してくれそうなのか、という3つの視点があります。

 インパクト(小⇔大)は、よくあるのが利益の額です。他には、コストダウン額の大きさや売上の額の大きさなどです。

(1)筋のいいテーマ

 

データサイエンス

 

 筋のいいテーマとは、容易かつインパクトの大きいテーマです。夢のようなテーマです。

 このようなおいしいテーマを、データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの理由で、やらないでほったらかしにしているケースも少なくありません。不思議なことです。

(2)筋の悪いテーマ

 

データサイエンス

 

 筋の悪いテーマとは、先ほどの筋のいいテーマの真逆で、難しいのにインパクトの小さいテーマです。悪夢のようなテーマです。このような悪夢なようなテーマにチャレンジし、なかなか成果を出せないケースもたまに見受けられます。恐ろしいことです。

 

2. データ分析:いばらの道で傷だらけになる

 

データサイエンス

 

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。
不思議なことです。難しいテーマに挑み、傷だらけになりながら、途中でやめることもせず、続けているケースもあります。

 よくよく話しを聞いてみると、「データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない」といった感じが背景にある不思議な選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。そこを敢えて、難易度の高いテーマを選ぶのですから大変です。

(1)意外とおいしい

 

データ分析

 

 意外とおいしいテーマは、容易だがインパクトの小さなテーマです。小粒ですが、容易なためすぐに成果が出ます。小さいな成果も、塵も積もれば山となる、ということで、それなりの成果になります。しかも、簡単ですぐ成果がでるため、データ分析人財(データサイエンス人財)を育成するのに好都合です。

 

3. データ分析:今回のまとめ

 今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをしました。世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。


 データ分析・活...

 

 

◆ データ分析:修羅の道を歩むデータサイエンティスト。

 世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをします。

【目次】
1. テーマ選びの2つの軸
 (1)筋のいいテーマ
 (2)筋の悪いテーマ
2. いばらの道で傷だらけになる
 (1)意外とおいしい
3. 今回のまとめ

 

1. データ分析:テーマ選びの2つの軸

 

データサイエンス

 

 データ分析・活用(データサイエンス実践)のテーマを選ぶとき、例えば次の2つの軸で考えていきます。容易性(難易⇔容易)インパクト(小⇔大)容易性(難易⇔容易)は、データ分析・活用(データサイエンス実践)の実現の容易性です。データが取得しやすいのか、分析しやすいのか、現場で容易に活用してくれそうなのか、という3つの視点があります。

 インパクト(小⇔大)は、よくあるのが利益の額です。他には、コストダウン額の大きさや売上の額の大きさなどです。

(1)筋のいいテーマ

 

データサイエンス

 

 筋のいいテーマとは、容易かつインパクトの大きいテーマです。夢のようなテーマです。

 このようなおいしいテーマを、データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの理由で、やらないでほったらかしにしているケースも少なくありません。不思議なことです。

(2)筋の悪いテーマ

 

データサイエンス

 

 筋の悪いテーマとは、先ほどの筋のいいテーマの真逆で、難しいのにインパクトの小さいテーマです。悪夢のようなテーマです。このような悪夢なようなテーマにチャレンジし、なかなか成果を出せないケースもたまに見受けられます。恐ろしいことです。

 

2. データ分析:いばらの道で傷だらけになる

 

データサイエンス

 

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。
不思議なことです。難しいテーマに挑み、傷だらけになりながら、途中でやめることもせず、続けているケースもあります。

 よくよく話しを聞いてみると、「データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない」といった感じが背景にある不思議な選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。そこを敢えて、難易度の高いテーマを選ぶのですから大変です。

(1)意外とおいしい

 

データ分析

 

 意外とおいしいテーマは、容易だがインパクトの小さなテーマです。小粒ですが、容易なためすぐに成果が出ます。小さいな成果も、塵も積もれば山となる、ということで、それなりの成果になります。しかも、簡単ですぐ成果がでるため、データ分析人財(データサイエンス人財)を育成するのに好都合です。

 

3. データ分析:今回のまとめ

 今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをしました。世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。


 データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。

 最初に選ぶべきは、容易かつインパクトの大きなテーマ、次に選ぶのが容易だけどインパクトの小さなテーマです。難易度の高いテーマに挑むためにデータ分析・活用(データサイエンス実践)があるわけではありません。成果を上げられなければ、そのデータ分析・活用(データサイエンス実践)に価値はありませんし、価値があるものだと認めてもらえません。

 データ分析・活用(データサイエンス実践)のテーマ選びは、存在するかどうか分からぬ桃源郷を目指すよりも、確実な足元に転がっている幸福を優先させた方がいいでしょう。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
数理統計学的な厳密性との狭間で データ分析講座(その155)

  ◆ データ分析・活用と数理統計学的な厳密性との狭間で  データ分析やデータサイエンス、機械学習などの基礎的なバックボーンとして、数理...

  ◆ データ分析・活用と数理統計学的な厳密性との狭間で  データ分析やデータサイエンス、機械学習などの基礎的なバックボーンとして、数理...


KPIに求められるSMARTとは データ分析講座(その29)

◆ 指標を制する者がデータ分析を制する  「蓄積されたデータを活用しろ!」といわれたら、多くの人が最初にやることといえば、恐らく手元にあるデータを何...

◆ 指標を制する者がデータ分析を制する  「蓄積されたデータを活用しろ!」といわれたら、多くの人が最初にやることといえば、恐らく手元にあるデータを何...


グロスデータと、データ分析結果の関係とは データ分析講座(その61)

◆ 売上分析でやること、グロスのデータを眺め、あることに気づくこと  営業もマーケティングも、データ分析をするぞ! と考えたとき、最初に手を付けるべ...

◆ 売上分析でやること、グロスのデータを眺め、あることに気づくこと  営業もマーケティングも、データ分析をするぞ! と考えたとき、最初に手を付けるべ...


「情報マネジメント一般」の活用事例

もっと見る
レストランでのタブレット端末

        最近、テーブルにタブレット端末を置くレストランが増えています。レストラン利用者としては、ウェ...

        最近、テーブルにタブレット端末を置くレストランが増えています。レストラン利用者としては、ウェ...


中小製造業のウェブ戦略

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...


‐情報収集で配慮すべき事項(第3回)‐  製品・技術開発力強化策の事例(その11)

 前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...

 前回の事例その10に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明...