データ分析・活用のテーマ選びとは データ分析講座(その177)

更新日

投稿日

 

 

◆ データ分析:修羅の道を歩むデータサイエンティスト。

 世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをします。

【目次】
1. テーマ選びの2つの軸
 (1)筋のいいテーマ
 (2)筋の悪いテーマ
2. いばらの道で傷だらけになる
 (1)意外とおいしい
3. 今回のまとめ

 

1. データ分析:テーマ選びの2つの軸

 

データサイエンス

 

 データ分析・活用(データサイエンス実践)のテーマを選ぶとき、例えば次の2つの軸で考えていきます。容易性(難易⇔容易)インパクト(小⇔大)容易性(難易⇔容易)は、データ分析・活用(データサイエンス実践)の実現の容易性です。データが取得しやすいのか、分析しやすいのか、現場で容易に活用してくれそうなのか、という3つの視点があります。

 インパクト(小⇔大)は、よくあるのが利益の額です。他には、コストダウン額の大きさや売上の額の大きさなどです。

(1)筋のいいテーマ

 

データサイエンス

 

 筋のいいテーマとは、容易かつインパクトの大きいテーマです。夢のようなテーマです。

 このようなおいしいテーマを、データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの理由で、やらないでほったらかしにしているケースも少なくありません。不思議なことです。

(2)筋の悪いテーマ

 

データサイエンス

 

 筋の悪いテーマとは、先ほどの筋のいいテーマの真逆で、難しいのにインパクトの小さいテーマです。悪夢のようなテーマです。このような悪夢なようなテーマにチャレンジし、なかなか成果を出せないケースもたまに見受けられます。恐ろしいことです。

 

2. データ分析:いばらの道で傷だらけになる

 

データサイエンス

 

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。
不思議なことです。難しいテーマに挑み、傷だらけになりながら、途中でやめることもせず、続けているケースもあります。

 よくよく話しを聞いてみると、「データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない」といった感じが背景にある不思議な選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。そこを敢えて、難易度の高いテーマを選ぶのですから大変です。

(1)意外とおいしい

 

データ分析

 

 意外とおいしいテーマは、容易だがインパクトの小さなテーマです。小粒ですが、容易なためすぐに成果が出ます。小さいな成果も、塵も積もれば山となる、ということで、それなりの成果になります。しかも、簡単ですぐ成果がでるため、データ分析人財(データサイエンス人財)を育成するのに好都合です。

 

3. データ分析:今回のまとめ

 今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをしました。世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。


 データ分析・活...

 

 

◆ データ分析:修羅の道を歩むデータサイエンティスト。

 世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをします。

【目次】
1. テーマ選びの2つの軸
 (1)筋のいいテーマ
 (2)筋の悪いテーマ
2. いばらの道で傷だらけになる
 (1)意外とおいしい
3. 今回のまとめ

 

1. データ分析:テーマ選びの2つの軸

 

データサイエンス

 

 データ分析・活用(データサイエンス実践)のテーマを選ぶとき、例えば次の2つの軸で考えていきます。容易性(難易⇔容易)インパクト(小⇔大)容易性(難易⇔容易)は、データ分析・活用(データサイエンス実践)の実現の容易性です。データが取得しやすいのか、分析しやすいのか、現場で容易に活用してくれそうなのか、という3つの視点があります。

 インパクト(小⇔大)は、よくあるのが利益の額です。他には、コストダウン額の大きさや売上の額の大きさなどです。

(1)筋のいいテーマ

 

データサイエンス

 

 筋のいいテーマとは、容易かつインパクトの大きいテーマです。夢のようなテーマです。

 このようなおいしいテーマを、データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの理由で、やらないでほったらかしにしているケースも少なくありません。不思議なことです。

(2)筋の悪いテーマ

 

データサイエンス

 

 筋の悪いテーマとは、先ほどの筋のいいテーマの真逆で、難しいのにインパクトの小さいテーマです。悪夢のようなテーマです。このような悪夢なようなテーマにチャレンジし、なかなか成果を出せないケースもたまに見受けられます。恐ろしいことです。

 

2. データ分析:いばらの道で傷だらけになる

 

データサイエンス

 

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。
不思議なことです。難しいテーマに挑み、傷だらけになりながら、途中でやめることもせず、続けているケースもあります。

 よくよく話しを聞いてみると、「データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない」といった感じが背景にある不思議な選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。そこを敢えて、難易度の高いテーマを選ぶのですから大変です。

(1)意外とおいしい

 

データ分析

 

 意外とおいしいテーマは、容易だがインパクトの小さなテーマです。小粒ですが、容易なためすぐに成果が出ます。小さいな成果も、塵も積もれば山となる、ということで、それなりの成果になります。しかも、簡単ですぐ成果がでるため、データ分析人財(データサイエンス人財)を育成するのに好都合です。

 

3. データ分析:今回のまとめ

 今回は「修羅の道を歩むデータサイエンティスト。いばらの道で傷だらけになる」のお話しをしました。世の中不思議なもので、確実な足元に転がっている幸福よりも、存在するかどうか分からぬ桃源郷を目指すケースが少なからずあります。データ分析・活用(データサイエンス実践)の世界も同様です。目の前に転がっている成果の出やすいテーマを足蹴にし、成果の出にくいテーマを追い続けているケースが多々あります。

 大企業の中で、急にデータサイエンティストを集め作った組織でよくあるのが、難しくインパクトの大きなテーマを選び苦労しているケースです。容易かつインパクトの大きい筋のいいテーマがあるにも関わらずです。


 データ分析・活用(データサイエンス実践)すべきテーマたるもの、難易度の高いテーマでなければならない、といった感じの選択です。同じぐらいのインパクトであるならば、容易なテーマな方がいいはずです。

 最初に選ぶべきは、容易かつインパクトの大きなテーマ、次に選ぶのが容易だけどインパクトの小さなテーマです。難易度の高いテーマに挑むためにデータ分析・活用(データサイエンス実践)があるわけではありません。成果を上げられなければ、そのデータ分析・活用(データサイエンス実践)に価値はありませんし、価値があるものだと認めてもらえません。

 データ分析・活用(データサイエンス実践)のテーマ選びは、存在するかどうか分からぬ桃源郷を目指すよりも、確実な足元に転がっている幸福を優先させた方がいいでしょう。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データと洞察で戦略的意思決定を導く:データ分析講座(その333)

現代の急速に変化するビジネス環境で競争優位を保つためには、データとその中からの洞察を上手く活用することが不可欠です。データ駆動のアプローチが主流となる...

現代の急速に変化するビジネス環境で競争優位を保つためには、データとその中からの洞察を上手く活用することが不可欠です。データ駆動のアプローチが主流となる...


AI技術と現場の融合とは データ分析講座(その182)

  ◆ データサイエンス×感覚が、より良い未来をもたらす  「AIとカラー化した写真でよみがえる戦前・戦争」 (光文社新書、...

  ◆ データサイエンス×感覚が、より良い未来をもたらす  「AIとカラー化した写真でよみがえる戦前・戦争」 (光文社新書、...


ビジネスにおけるハイパーパラメータ最適化(その3):データ分析講座(その365)

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 前回のビジネスにおけるハイパーパラメータ最適...

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 前回のビジネスにおけるハイパーパラメータ最適...


「情報マネジメント一般」の活用事例

もっと見る
‐情報収集と開発活動、営業の役割‐  製品・技術開発力強化策の事例(その12)

   前回の事例その11に続いて解説します。製品開発は完了したがどのように売れば良いのか、ベンチャ-ビジネスの相談や異業種交流の会合では特に売り方に関する...

   前回の事例その11に続いて解説します。製品開発は完了したがどのように売れば良いのか、ベンチャ-ビジネスの相談や異業種交流の会合では特に売り方に関する...


現場情報の自動収集に道具だてを

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...


‐販路開拓に関する問題 第1回‐  製品・技術開発力強化策の事例(その17)

 前回の事例その16に続いて解説します。開発が完了したから販売先を探す。そのような考え方で開発に従事することは根本的に間違っている事は既に述べました。開発...

 前回の事例その16に続いて解説します。開発が完了したから販売先を探す。そのような考え方で開発に従事することは根本的に間違っている事は既に述べました。開発...