自動機械学習 データ分析講座(その184)

更新日

投稿日

 

 

◆ 古くて新しい自動機械学習

似たような数理モデルあり、その中から数理モデルを選択してモデル構築する場合のことです。このようなことを自動化したのが、自動機械学習(Automated Machine Learning)というものです。今回は「古くて新しい自動機械学習(Automated Machine Learning)」というお話しです。

【目次】

1.数理モデルの構築プロセス

2.有料ツール

3.無料ツール

4.ハイブリッドな使い方が一番いいかも

5.今回のまとめ

 

1.数理モデルの構築プロセス

 

データ分析

 

数理モデルを構築するプロセスは、例えば次のような感じではないでしょうか。

データ準備

前処理(データクレンジング含む)

特徴量生成・加工・選定

モデル選定・パラメータ最適化・モデル評価

デプロイ(展開)

 

昔からある「自動機械学習(Automated Machine Learning)」は「モデル選定・パラメータ最適化・モデル評価」の部分です。最近ですと「特徴量生成・加工・選定」のフィーチャーエンジニアリングの部分も対象にしているものもあるようです。しかしフィーチャーエンジニアリングの自動化は、まだ難しいのではないかと思います。

 

2.有料ツール

最近は、クラウド上で使える有料の自動機械学習(Automated Machine Learning)も出始めています。

有料版のもので、よく名前を聞くのが以下です。

  • AutoML Tables(Google)
  • AutoAI(IBM)
  • Automated ML(Microsoft)
  • DataRobot(DataRobot)
  • AutoFlow(MatrixFlow)
  • Driverless AI(H20.ai)

有料版だけあって、ユーザインターフェースが綺麗です。

 

3.無料ツール

データ分析や数理モデル構築といえば、最近ではRやPython、Juliaなどの無料で使えるものが多数あります。

自動機械学習(Automated Machine Learning)も例外ではなく、幾つかあります。RやPyhton上で動かすものです。

  • R automl
  • R RemixAutoML
  • AUTO-WEKA
  • Python auto-sklearn
  • Python TPOT

 

4.ハイブリッドな使い方が一番いいかも

恐らく、ある程度の数理モデル構築経験のある人であれば、自動機械学習(Automated Machine Learning)で構築した数理モデルの精度を超えることはできるでしょう。有料の自動機械学習(Automated Machine Learning)ツールの場合、安くはないです。無料あれば、コスト面を気にする必要はないことでしょう。しかし、RやPython上で実施するため、それなりのスキルは必要になります。

 

そうなると、無料版を使うとき初心者にはそれなりのハードルがあります。無料版の現状一番いい使い方は、ハイブリッドな使い方が一番いいかもしれません。手作りのモデル構築をサポートする形で、自動機械学習の機能を活用する、という感じです。

 

特に、「特徴量生成・加工・選定」のフィーチャーエンジニアリングの部分は、人手が必要な気がしま...

 

 

◆ 古くて新しい自動機械学習

似たような数理モデルあり、その中から数理モデルを選択してモデル構築する場合のことです。このようなことを自動化したのが、自動機械学習(Automated Machine Learning)というものです。今回は「古くて新しい自動機械学習(Automated Machine Learning)」というお話しです。

【目次】

1.数理モデルの構築プロセス

2.有料ツール

3.無料ツール

4.ハイブリッドな使い方が一番いいかも

5.今回のまとめ

 

1.数理モデルの構築プロセス

 

データ分析

 

数理モデルを構築するプロセスは、例えば次のような感じではないでしょうか。

データ準備

前処理(データクレンジング含む)

特徴量生成・加工・選定

モデル選定・パラメータ最適化・モデル評価

デプロイ(展開)

 

昔からある「自動機械学習(Automated Machine Learning)」は「モデル選定・パラメータ最適化・モデル評価」の部分です。最近ですと「特徴量生成・加工・選定」のフィーチャーエンジニアリングの部分も対象にしているものもあるようです。しかしフィーチャーエンジニアリングの自動化は、まだ難しいのではないかと思います。

 

2.有料ツール

最近は、クラウド上で使える有料の自動機械学習(Automated Machine Learning)も出始めています。

有料版のもので、よく名前を聞くのが以下です。

  • AutoML Tables(Google)
  • AutoAI(IBM)
  • Automated ML(Microsoft)
  • DataRobot(DataRobot)
  • AutoFlow(MatrixFlow)
  • Driverless AI(H20.ai)

有料版だけあって、ユーザインターフェースが綺麗です。

 

3.無料ツール

データ分析や数理モデル構築といえば、最近ではRやPython、Juliaなどの無料で使えるものが多数あります。

自動機械学習(Automated Machine Learning)も例外ではなく、幾つかあります。RやPyhton上で動かすものです。

  • R automl
  • R RemixAutoML
  • AUTO-WEKA
  • Python auto-sklearn
  • Python TPOT

 

4.ハイブリッドな使い方が一番いいかも

恐らく、ある程度の数理モデル構築経験のある人であれば、自動機械学習(Automated Machine Learning)で構築した数理モデルの精度を超えることはできるでしょう。有料の自動機械学習(Automated Machine Learning)ツールの場合、安くはないです。無料あれば、コスト面を気にする必要はないことでしょう。しかし、RやPython上で実施するため、それなりのスキルは必要になります。

 

そうなると、無料版を使うとき初心者にはそれなりのハードルがあります。無料版の現状一番いい使い方は、ハイブリッドな使い方が一番いいかもしれません。手作りのモデル構築をサポートする形で、自動機械学習の機能を活用する、という感じです。

 

特に、「特徴量生成・加工・選定」のフィーチャーエンジニアリングの部分は、人手が必要な気がします。

 

5.今回のまとめ

今回は「古くて新しい自動機械学習(Automated Machine Learning)」というお話しをしました。多くのツールは、「モデル選定・パラメータ最適化・モデル評価」の部分を自動化しています。中には、「モデル選定・パラメータ最適化・モデル評価」の前の「特徴量生成・加工・選定」の部分も対象にしているものもあるようです。素晴らしいことです。

 

現状一番いい使い方は、ハイブリッドな使い方が一番いいかもしれません。手作りのモデル構築をサポートする形で、自動機械学習の機能を活用する、という感じです。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
新規拡大、既存奪い取りの判断指標とは データ分析講座(その259)

  売上増の方向性としては、次の2つがあります。 すでに市場にいる既存顧客を競合から奪い取る 市場規模を拡大すべく市場外からの新規...

  売上増の方向性としては、次の2つがあります。 すでに市場にいる既存顧客を競合から奪い取る 市場規模を拡大すべく市場外からの新規...


リスク分析とセキュリティ脅威 制御システム(その3)

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...

  【制御システム 連載目次】 1. セキュリティ脅威と歴史 2. サイバー攻撃事例、情報システムとの違い 3. リスク分析とセキュ...


合成データとは、そのメリットや注意点:データ分析講座(その327)

  AI活用の前に立ちはだかる壁の1つが、AIを構成する機械学習モデル(数理モデル)を作るためのデータ不足です。データの量や質が不十分だと...

  AI活用の前に立ちはだかる壁の1つが、AIを構成する機械学習モデル(数理モデル)を作るためのデータ不足です。データの量や質が不十分だと...


「情報マネジメント一般」の活用事例

もっと見る
‐技術開発の目標について 第2回‐  製品・技術開発力強化策の事例(その16)

 技術開発の目標を解説する以下の項目4点について、前回は、1と2を解説しましたので、今回は、第2回として、3と4を記述します。          1....

 技術開発の目標を解説する以下の項目4点について、前回は、1と2を解説しましたので、今回は、第2回として、3と4を記述します。          1....


電子メール、簡潔過ぎると逆効果

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...


‐技術開発の目標について 第1回‐  製品・技術開発力強化策の事例(その15)

 前回の事例その14に続いて解説します。製品開発を目指している企業の中には、テ-マが見つかったら、または、アイデアが閃いたら開発に取り組む。そのような淡い...

 前回の事例その14に続いて解説します。製品開発を目指している企業の中には、テ-マが見つかったら、または、アイデアが閃いたら開発に取り組む。そのような淡い...