データによる課題発見と課題解決 データ分析講座(その247)

投稿日

データ分析

 

問題解決は、取り組むテーマ・課題を設定する「課題発見フェーズ」と、その課題に取り組む「課題解決フェーズ」に分かれます。そこでどのようにデータを絡ませるか?データの絡ませ方には4つのパターンがあります。今回は「データによる課題発見と課題解決」というお話しをします。

 

【目次】
1. 4つのパターン
 (1)パターン1:課題発見でデータを使う
 (2)パターン2:課題解決でデータを使う
 (3)パターン3:課題発見と課題解決の両方でデータを使う
 (4)パターン4:課題発見と課題解決のどちらでもデータを使わない

 

【この連載の前回:データ分析講座(その246)データから根本原因を考えるフレームワークへのリンク】

1. 4つのパターン

問題解決でのデータの絡ませ方には、以下の4つのパターンがあります。  

 

情報マネジメント

 

  • パターン1:課題発見でデータを使う
  • パターン2:課題解決でデータを使う
  • パターン3:課題発見と課題解決の両方でデータを使う
  • パターン4:課題発見と課題解決のどちらでもデータを使わない

 

(1)パターン1:課題発見でデータを使う

課題発見でデータを使うとは、取り組むテーマと言うか課題を設定するときに、データによるエビデンスと言うかファクト(事実)もしくはデータから導き出した傾向にもとづいた検討をする、ということです。従来からある数理統計学や多変量解析の力を使います。多くの場合、統計的推測(推定と検定)や相関関係(もしくは回帰分析や決定木分析など)の分析で十分です。

 

例えば、売上が落ちた、という事実に対し、なぜ落ちたのかをデータも活用し分析し、その要因を探る、ということです。もちろん、十分なデータがない場合のケースが多々あります。データがない場合には、データにもとづいた定量的なアプローチではなく、ヒアリングや現地調査などの定性的なアプローチが必要になります。

 

(2)パターン2:課題解決でデータを使う

課題解決でデータを使うとは、取り組むテーマと言うか設定された課題に取り組むときに、データを使って現場アクションの手助けをする、ということです。例えば、顧客の離反対策を日々実施しなければならない部署にとって、誰が離反しそうかのアラートは重要です。そのアラートをデータにもとづいて出すということです。

 

例えば、受注予測や予知保全、予兆検知なども同様でしょう。今すべき現場アクションの背中を押したり、アクションの質を高めたりするために利用されるケースが多いです。

 

(3)パターン3:課題発見と課題解決の両方でデータを使う

課題発見と課題解決の両方でデータを使うとは、取り組むテーマと言うか課題を設定するときにもデータを使うし、その課題に取り組むときにもデータを使うケースです。

 

このパターンは、データが大活躍します。データを両方で使える状態になっている場合、まさにデータドリブンな状態と言えるでしょう。営業であればデータドリブン営業、マーケティングであればデータドリブンマーケティング、経営であればデータドリブン経営、などなど。

 

(4)パターン4:課題発見と課題解決のどちらでもデータを使わない

データは無理して使う必要はありません。データを使わずに問題解決できるのであれば、それはそれで問題ありません。世の中には、データを使わなくても課題発見できることもありますし、デ...

データ分析

 

問題解決は、取り組むテーマ・課題を設定する「課題発見フェーズ」と、その課題に取り組む「課題解決フェーズ」に分かれます。そこでどのようにデータを絡ませるか?データの絡ませ方には4つのパターンがあります。今回は「データによる課題発見と課題解決」というお話しをします。

 

【目次】
1. 4つのパターン
 (1)パターン1:課題発見でデータを使う
 (2)パターン2:課題解決でデータを使う
 (3)パターン3:課題発見と課題解決の両方でデータを使う
 (4)パターン4:課題発見と課題解決のどちらでもデータを使わない

 

【この連載の前回:データ分析講座(その246)データから根本原因を考えるフレームワークへのリンク】

1. 4つのパターン

問題解決でのデータの絡ませ方には、以下の4つのパターンがあります。  

 

情報マネジメント

 

  • パターン1:課題発見でデータを使う
  • パターン2:課題解決でデータを使う
  • パターン3:課題発見と課題解決の両方でデータを使う
  • パターン4:課題発見と課題解決のどちらでもデータを使わない

 

(1)パターン1:課題発見でデータを使う

課題発見でデータを使うとは、取り組むテーマと言うか課題を設定するときに、データによるエビデンスと言うかファクト(事実)もしくはデータから導き出した傾向にもとづいた検討をする、ということです。従来からある数理統計学や多変量解析の力を使います。多くの場合、統計的推測(推定と検定)や相関関係(もしくは回帰分析や決定木分析など)の分析で十分です。

 

例えば、売上が落ちた、という事実に対し、なぜ落ちたのかをデータも活用し分析し、その要因を探る、ということです。もちろん、十分なデータがない場合のケースが多々あります。データがない場合には、データにもとづいた定量的なアプローチではなく、ヒアリングや現地調査などの定性的なアプローチが必要になります。

 

(2)パターン2:課題解決でデータを使う

課題解決でデータを使うとは、取り組むテーマと言うか設定された課題に取り組むときに、データを使って現場アクションの手助けをする、ということです。例えば、顧客の離反対策を日々実施しなければならない部署にとって、誰が離反しそうかのアラートは重要です。そのアラートをデータにもとづいて出すということです。

 

例えば、受注予測や予知保全、予兆検知なども同様でしょう。今すべき現場アクションの背中を押したり、アクションの質を高めたりするために利用されるケースが多いです。

 

(3)パターン3:課題発見と課題解決の両方でデータを使う

課題発見と課題解決の両方でデータを使うとは、取り組むテーマと言うか課題を設定するときにもデータを使うし、その課題に取り組むときにもデータを使うケースです。

 

このパターンは、データが大活躍します。データを両方で使える状態になっている場合、まさにデータドリブンな状態と言えるでしょう。営業であればデータドリブン営業、マーケティングであればデータドリブンマーケティング、経営であればデータドリブン経営、などなど。

 

(4)パターン4:課題発見と課題解決のどちらでもデータを使わない

データは無理して使う必要はありません。データを使わずに問題解決できるのであれば、それはそれで問題ありません。世の中には、データを使わなくても課題発見できることもありますし、データを使わなくても課題解決することもあります。

 

しかし、両方で使わない場合、データが無かったり、データがあっても汚かったり、データ活用できる状態でない場合も少なくありません。まともにデータ活用を実施したことのない組織のデータほど、汚いという実情があります。そのような組織の方は、何かしらデータ分析を実施し、その汚さを認識し、一度データを綺麗にしておくことをお勧めします。

 

◆【特集】 連載記事紹介連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆データ分析講座の注目記事紹介

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ活用の見通しを明るくするには データ分析講座(その47)

◆ データを活用した大いなる成功になるかどうかの成否を分ける、一つの質問とは  ビッグデータが騒がれて大分たちます。不思議なことに、派生した用語(デ...

◆ データを活用した大いなる成功になるかどうかの成否を分ける、一つの質問とは  ビッグデータが騒がれて大分たちます。不思議なことに、派生した用語(デ...


より高度な分析にこだわる罠とは データ分析講座(その51)

◆ 高度なデータ分析にこだわるほど、データ活用から遠のくという悲しい現実  データ分析の実務を始めたころに、誰もが陥る罠があります。実は、人によって...

◆ 高度なデータ分析にこだわるほど、データ活用から遠のくという悲しい現実  データ分析の実務を始めたころに、誰もが陥る罠があります。実は、人によって...


見込み顧客の受注予測とは データ分析講座(その252)

  法人相手のビジネスやECサイト、個別面談を通すようなビジネスなどでは、顧客をIDベースで追えるケースが多いのです。運が良ければ、リード...

  法人相手のビジネスやECサイト、個別面談を通すようなビジネスなどでは、顧客をIDベースで追えるケースが多いのです。運が良ければ、リード...


「情報マネジメント一般」の活用事例

もっと見る
現場情報の自動収集に道具だてを

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...


中小製造業のウェブ戦略

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...


生産スピード向上と品質管理

 電子メールやインターネットの普及により、ビジネスのグローバル化が大きく進みましたが、IT技術の進歩は、品質管理の方法も進歩させました。20数年前は製造条...

 電子メールやインターネットの普及により、ビジネスのグローバル化が大きく進みましたが、IT技術の進歩は、品質管理の方法も進歩させました。20数年前は製造条...