誰かが困っているところで、循環経済を起こせ! データ分析講座(その221)

投稿日

データ分析

 

【この連載の前回:データ分析講座(その220)完璧にデータを集めなければならないのかへのリンク】

データサイエンスは、データとドメイン(データ活用の現場)の間の橋であり、その橋を走る汽車のようなものです。ドメイン(データ活用の現場)を覗いてみれば、そこには何かに困っている人がいます。何かに困っている人が、何に困っているのかを上手く説明出来るわけではありません。上手く説明できないどころか、何に困っているのかさえ明確に認識していないケースも多々あります。データサイエンスが上手くドメイン(データ活用の現場)で機能しているとき、ある現象が起こっています。サーキュラーエコノミー(循環経済、Circular Economy)です。

 

今回は、「誰かが困っているところで、データサイエンスの循環経済を起こせ!」というお話しをします。

【目次】
1.データサイエンスはお困りごとから始まる
(1)サーキュラーエコノミー(循環経済)
(2)データは新しい原油である
(3)分析レポートや数理モデルも捨てない
2.データベースの上書き問題
3.データサイエンスはサーキュラーエコノミー

 

1.データサイエンスはお困りごとから始まる

データサイエンスの出発点は、ドメイン(データ活用の現場)で起こっているお困りごとです。誰も困っていないのに、お節介にデータサイエンスを押し付けるのは最悪です。お困りごとといっても、明確に認識している場合と、そうでない場合があります。

 

さらに、今困っていなけど、未来のお困りごともあります。ドメイン(データ活用の現場)のお困りごとが、明確でない場合には、それを明確化する活動が必要になります。

 

(1)サーキュラーエコノミー(循環経済)

ところで、サーキュラーエコノミー(循環経済、Circular Economy)とは何でしょうか?これまでの経済はリニアエコノミー(直線経済、Linear Economy)と呼ばれています。自然界から取り出された資源やエネルギーなどを採掘し(Take)、それらを用いて製品などを生産し(Make)、それが不必要になると捨てる(Waste)、という形で消費され続ける経済です。

 

サーキュラーエコノミーとは、端的に言うと廃棄物を出すことなく資源を循環させることです。データサイエンスが上手く活用されている状態が、まさにサーキュラーエコノミーの状態を作っている。

 

(2)データは新しい原油である

データは新しい原油である、と言われています。リニアエコノミーの概念で考えると、発生したデータは何かしら活用された後に廃棄され、それ以上活用されません。集計や分析などに利用したデータを廃棄したりすることに該当します。場合によってが、何ら利用されることなく廃棄されることもあることでしょう。しかし、最近では過去データを積極的に廃棄することは稀になっているようです。

 

なぜならば、集計や分析などに利用したデータであっても、十分に利用価値があるからです。

 

(3)分析レポートや数理モデルも捨てない

集計や分析などに利用したデータだけでなく、集計や分析した結果をまとめた分析レポートや、そのとき構築した数理モデル(異常検知モデルや予測モデルなど)も、ある種のデータです。

 

データ分析

 

何を言いたいかと言うと、分析レポートや数理モデルもある種のデータなので捨てないようにしましょう。過去の分析レポートや数理モデルも、そこから多くの学びなどを得ることができます。どのような分析レポートを出したとき、現場ではどの部分を参考にし、どのような意思決定やアクションを起こしたのか、それは非常に有用な記録(データ)です。どのようなデータで、どのような数理モデルを構築したとき、どのくらいの精度で未来を予測し、どのように活かされたのか、それは非常に有用な記録(データ)です。

 

最近のBIツールのダッシュボードは、そういう意味では危険です。その時、その場で、どのようなダッシュボード(集計結果やグラフなど)を見たのかが分からなくなる可能性があるからです。数理モデルの定期的な更新(再学習)も、無邪気に実施すると危険です。1世代前や2世代前などの数理モデルがどういったものか分からなくなるからです。

 

2.データベースの上書き問題

恐ろしいことに、データベースにあるテーブルも上書き更新する人や組織もあります。上書きしたら、その前の状態のデータが消えてしまいます。これは、過去データを捨てているのと同じです。分析レポートや数理モデルを捨てること以上に、恐ろしいことです。消えたデータは、当然ながらもう利用することは出来ません。

 

3.データサイエンスはサーキュラーエコノミー

発生したデータは、一度利用されても、再利用可能です。どちらかと言うと、積極的に再利用されます。

 

データ分析

...

データ分析

 

【この連載の前回:データ分析講座(その220)完璧にデータを集めなければならないのかへのリンク】

データサイエンスは、データとドメイン(データ活用の現場)の間の橋であり、その橋を走る汽車のようなものです。ドメイン(データ活用の現場)を覗いてみれば、そこには何かに困っている人がいます。何かに困っている人が、何に困っているのかを上手く説明出来るわけではありません。上手く説明できないどころか、何に困っているのかさえ明確に認識していないケースも多々あります。データサイエンスが上手くドメイン(データ活用の現場)で機能しているとき、ある現象が起こっています。サーキュラーエコノミー(循環経済、Circular Economy)です。

 

今回は、「誰かが困っているところで、データサイエンスの循環経済を起こせ!」というお話しをします。

【目次】
1.データサイエンスはお困りごとから始まる
(1)サーキュラーエコノミー(循環経済)
(2)データは新しい原油である
(3)分析レポートや数理モデルも捨てない
2.データベースの上書き問題
3.データサイエンスはサーキュラーエコノミー

 

1.データサイエンスはお困りごとから始まる

データサイエンスの出発点は、ドメイン(データ活用の現場)で起こっているお困りごとです。誰も困っていないのに、お節介にデータサイエンスを押し付けるのは最悪です。お困りごとといっても、明確に認識している場合と、そうでない場合があります。

 

さらに、今困っていなけど、未来のお困りごともあります。ドメイン(データ活用の現場)のお困りごとが、明確でない場合には、それを明確化する活動が必要になります。

 

(1)サーキュラーエコノミー(循環経済)

ところで、サーキュラーエコノミー(循環経済、Circular Economy)とは何でしょうか?これまでの経済はリニアエコノミー(直線経済、Linear Economy)と呼ばれています。自然界から取り出された資源やエネルギーなどを採掘し(Take)、それらを用いて製品などを生産し(Make)、それが不必要になると捨てる(Waste)、という形で消費され続ける経済です。

 

サーキュラーエコノミーとは、端的に言うと廃棄物を出すことなく資源を循環させることです。データサイエンスが上手く活用されている状態が、まさにサーキュラーエコノミーの状態を作っている。

 

(2)データは新しい原油である

データは新しい原油である、と言われています。リニアエコノミーの概念で考えると、発生したデータは何かしら活用された後に廃棄され、それ以上活用されません。集計や分析などに利用したデータを廃棄したりすることに該当します。場合によってが、何ら利用されることなく廃棄されることもあることでしょう。しかし、最近では過去データを積極的に廃棄することは稀になっているようです。

 

なぜならば、集計や分析などに利用したデータであっても、十分に利用価値があるからです。

 

(3)分析レポートや数理モデルも捨てない

集計や分析などに利用したデータだけでなく、集計や分析した結果をまとめた分析レポートや、そのとき構築した数理モデル(異常検知モデルや予測モデルなど)も、ある種のデータです。

 

データ分析

 

何を言いたいかと言うと、分析レポートや数理モデルもある種のデータなので捨てないようにしましょう。過去の分析レポートや数理モデルも、そこから多くの学びなどを得ることができます。どのような分析レポートを出したとき、現場ではどの部分を参考にし、どのような意思決定やアクションを起こしたのか、それは非常に有用な記録(データ)です。どのようなデータで、どのような数理モデルを構築したとき、どのくらいの精度で未来を予測し、どのように活かされたのか、それは非常に有用な記録(データ)です。

 

最近のBIツールのダッシュボードは、そういう意味では危険です。その時、その場で、どのようなダッシュボード(集計結果やグラフなど)を見たのかが分からなくなる可能性があるからです。数理モデルの定期的な更新(再学習)も、無邪気に実施すると危険です。1世代前や2世代前などの数理モデルがどういったものか分からなくなるからです。

 

2.データベースの上書き問題

恐ろしいことに、データベースにあるテーブルも上書き更新する人や組織もあります。上書きしたら、その前の状態のデータが消えてしまいます。これは、過去データを捨てているのと同じです。分析レポートや数理モデルを捨てること以上に、恐ろしいことです。消えたデータは、当然ながらもう利用することは出来ません。

 

3.データサイエンスはサーキュラーエコノミー

発生したデータは、一度利用されても、再利用可能です。どちらかと言うと、積極的に再利用されます。

 

データ分析

 

例えば……

  • データベースから、必要なデータを抽出する
  • 抽出したデータで、データ分析や数理モデルを構築する
  • そのアウトプット(分析結果や予測結果など)を、現場に提供する
  • 現場では提供されたアウトプットを用い、意思決定し施策(アクション)を実施する
  • その施策(アクション)の結果、新たなデータ(実施した施策とその結果)が発生する
  • 新たに発生したデータを、データベースに追加する

……と言う感じで、グルグル循環します。

 

分析レポートも予測モデルも、どんどん進化します。ドメイン(データ活用の現場)も、どんどんより良い状態になったり、変わり続ける環境に適応し続けます。データサイエンスが上手くドメイン(データ活用の現場)で機能しているとき、サーキュラーエコノミー(循環経済、Circular Economy)という状態になっているのです。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データ分析から垣間見られる人となり:データ分析講座(その173)

  ◆ データ分析の結果をどう扱うか  同じ事実でも、そこから導き出されることは人によって異なります。同じデータ分析結果に対し、どのよう...

  ◆ データ分析の結果をどう扱うか  同じ事実でも、そこから導き出されることは人によって異なります。同じデータ分析結果に対し、どのよう...


複数の季節変動成分のある時系列データ データ分析講座(その272)

  売上などの時系列データには、周期性があります。周期性の中で、期間の決まっているものを季節性と言ったりします。例えば、1日単位の売上デー...

  売上などの時系列データには、周期性があります。周期性の中で、期間の決まっているものを季節性と言ったりします。例えば、1日単位の売上デー...


標準化か正規化か?機械学習データ処理の選択肢:データ分析講座(その348)

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 機械学習におけるデータの前処理は、モデルの性能に大き...

【目次】  ▼さらに深く学ぶなら!「データ分析」に関するセミナーはこちら! 機械学習におけるデータの前処理は、モデルの性能に大き...


「情報マネジメント一般」の活用事例

もっと見る
情報、常識の検証を考える

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...

1、勝ち組と負け組を支配する情報  皆さんがご存じの大手予備校有名講師である林先生が、かつてテレビで「情報」に関して興味深いことをおっしゃっており、...


‐販路開拓に関する問題事例‐ 製品・技術開発力強化策の事例(その19)

 前回の事例その18に続いて解説します。多額の資金と労力を費やして開発した知的財産をどのように活用して販路開拓に結びつけるのか、大変重要な問題ですが、販売...

 前回の事例その18に続いて解説します。多額の資金と労力を費やして開発した知的財産をどのように活用して販路開拓に結びつけるのか、大変重要な問題ですが、販売...


守秘義務は情報社会の命綱

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...