データ分析の役回りとは データ分析講座(その125)

更新日

投稿日

情報マネジメント

◆ データ分析はスゴイ狂言回し

 嬉しいことに、近頃どうにかデータ活用できないものだろうかと模索する企業や人が増えています。例えばビッグデータ、データサイエンス、機械学習、AIなどのキーワードはまさにその期待の表れでしょう。まさにデータ分析がビジネスを引っ張っていく、そのようなデータ分析が主役に躍り出る時代が近付いてきたのでしょうか。そこで今回は「データ分析はスゴイ狂言回し」というお話しをします。

1、狂言回し   ~物語を進行し主役を導く

 「狂言回し」は地味だけど重要な役回りを演じます。有名なところでは、手塚治虫の漫画に登場する火の鳥です。火の鳥は時間を超越し物語を進行し、各ストーリーの主役を導く「狂言回し」の役回りを演じています。

 データ分析も火の鳥と同じです。過去を見つめ未来を見通し、主役である営業パーソンやマーケターなどをより良い方向に導き、素敵な物語に仕上げていきます。そして生かされないデータ分析は、そんな狂言回しの役を演じる機会を奪われています。

2、3つのポイント

 狂言回しの役回りをデータ分析に演じてもらうため、3つのポイントがありますので次に説明します。

  • (1) まずは「質」より「量」
  • (2)「どう分析するか」よりも「どう生かすか」
  • (3)「打ち上げ花火」よりも「線香花火」

(1) まずは「質」より「量」

 「ああだ、こうだ」とブツブツ言う前に、とりあえずデータ分析を始めよ!ということです。

 分析環境が整っていないと文句をつぶやいたり、頭の中で「ああでもない、こうでもない」と妄想したりする暇があったら、たくさん手を動かして壁にぶち当たった方が実りは大きいのです。まずはデータ分析の質よりも、データ分析の経験量です。

(2)「どう分析するか」よりも「どう生かすか」

 データ分析そのものよりも分析の先にある「活用」を重視しよう!ということです。

 生かされないデータ分析は無価値です。溜めたデータがゴミになるか宝になるかは分析次第です。どうせなら折角溜めたデータですから、どんなに汚いデータでもその可能性を信じ、データ分析で宝に換えましょう。

(3)「打ち上げ花火」よりも「線香花火」

 一発ドカーンとすごいデータ分析を夢見るよりも、堅実で長く続けるデータ分析を目指しましょう!ということです。

 そもそも過去のデータをいくら分析しても、新しいスゴイ発見をすることは稀です。データ分析で劇的な変化はそうそう起こりません。どちらかというと、知るべきことを確実に知り、やれることを確実にやる。過去の傾向から対策を打つ。過去の失敗を二度と犯さない。このようなデータ分析をコツコ...

情報マネジメント

◆ データ分析はスゴイ狂言回し

 嬉しいことに、近頃どうにかデータ活用できないものだろうかと模索する企業や人が増えています。例えばビッグデータ、データサイエンス、機械学習、AIなどのキーワードはまさにその期待の表れでしょう。まさにデータ分析がビジネスを引っ張っていく、そのようなデータ分析が主役に躍り出る時代が近付いてきたのでしょうか。そこで今回は「データ分析はスゴイ狂言回し」というお話しをします。

1、狂言回し   ~物語を進行し主役を導く

 「狂言回し」は地味だけど重要な役回りを演じます。有名なところでは、手塚治虫の漫画に登場する火の鳥です。火の鳥は時間を超越し物語を進行し、各ストーリーの主役を導く「狂言回し」の役回りを演じています。

 データ分析も火の鳥と同じです。過去を見つめ未来を見通し、主役である営業パーソンやマーケターなどをより良い方向に導き、素敵な物語に仕上げていきます。そして生かされないデータ分析は、そんな狂言回しの役を演じる機会を奪われています。

2、3つのポイント

 狂言回しの役回りをデータ分析に演じてもらうため、3つのポイントがありますので次に説明します。

  • (1) まずは「質」より「量」
  • (2)「どう分析するか」よりも「どう生かすか」
  • (3)「打ち上げ花火」よりも「線香花火」

(1) まずは「質」より「量」

 「ああだ、こうだ」とブツブツ言う前に、とりあえずデータ分析を始めよ!ということです。

 分析環境が整っていないと文句をつぶやいたり、頭の中で「ああでもない、こうでもない」と妄想したりする暇があったら、たくさん手を動かして壁にぶち当たった方が実りは大きいのです。まずはデータ分析の質よりも、データ分析の経験量です。

(2)「どう分析するか」よりも「どう生かすか」

 データ分析そのものよりも分析の先にある「活用」を重視しよう!ということです。

 生かされないデータ分析は無価値です。溜めたデータがゴミになるか宝になるかは分析次第です。どうせなら折角溜めたデータですから、どんなに汚いデータでもその可能性を信じ、データ分析で宝に換えましょう。

(3)「打ち上げ花火」よりも「線香花火」

 一発ドカーンとすごいデータ分析を夢見るよりも、堅実で長く続けるデータ分析を目指しましょう!ということです。

 そもそも過去のデータをいくら分析しても、新しいスゴイ発見をすることは稀です。データ分析で劇的な変化はそうそう起こりません。どちらかというと、知るべきことを確実に知り、やれることを確実にやる。過去の傾向から対策を打つ。過去の失敗を二度と犯さない。このようなデータ分析をコツコツ地味に続けると、ものすごい成果として跳ね返ってきます。ホームランバッターではなく、息の長いアベレージヒッターのイメージです。

・・・・・・・・・・・・・・・・・・・・

 火の鳥のように時間を超越し物語を進行する“スゴイ狂言回し”なデータ分析をすることで、過去に囚われることや未来を憂えることもなく、また現在に絶望したり、ブームに踊らされることも少なくなります。

 データを使い過去をしっかり見つめ、これからの未来を見通します。主役である営業パーソンやマーケターなどが、今この時に集中し、もっとも良いパフォーマンスを発揮できるよう導きましょう。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
振返り分析と予測分析の運用上の違い:データ分析講座(その318)

  今回は「振返り分析と予測分析の運用上の違い」というお話しをします。 【記事要約】 振返り分析と予測分析の運用上の違いについてですが...

  今回は「振返り分析と予測分析の運用上の違い」というお話しをします。 【記事要約】 振返り分析と予測分析の運用上の違いについてですが...


不確実性の霧を晴らす、ビジネスデータ活用とは:データ分析講座(その336)

  【目次】 19世紀の軍事理論家、カール・フォン・クラウゼビッツは、戦争に関する多くの深い洞察を提供しました。彼の著作「戦...

  【目次】 19世紀の軍事理論家、カール・フォン・クラウゼビッツは、戦争に関する多くの深い洞察を提供しました。彼の著作「戦...


間接部門のプロセス改善とは 人材育成・組織・マネジメント(その1)

    【人材育成・組織・マネジメントの考察 連載目次】 1. 間接部門のプロセス改善とは 2. 現場は全てを物語る ...

    【人材育成・組織・マネジメントの考察 連載目次】 1. 間接部門のプロセス改善とは 2. 現場は全てを物語る ...


「情報マネジメント一般」の活用事例

もっと見る
Excelの帳票を見直そう

 オフィス業務においては、マイクロソフトOfficeがデファクトスタンダードになっています。とりわけ活用されているのはExcelでしょう。Excelを使う...

 オフィス業務においては、マイクロソフトOfficeがデファクトスタンダードになっています。とりわけ活用されているのはExcelでしょう。Excelを使う...


P値で行う統計リテラシー判定

 「ピーチ」って聞いたら何を連想しますか、統計を学んでいる人に取っては「 P値 」が思い浮かぶはずです。統計学の素養がある程度備わっているか一言で知ろうと...

 「ピーチ」って聞いたら何を連想しますか、統計を学んでいる人に取っては「 P値 」が思い浮かぶはずです。統計学の素養がある程度備わっているか一言で知ろうと...


簡易版DX/IoTから機械学習への移行

  DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に 産業界のニュースなどをインターネットで読んでいると、DX...

  DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に 産業界のニュースなどをインターネットで読んでいると、DX...