データサイエンティストに必要な鈍感力 データ分析講座(その238)

更新日

投稿日

データ分析

 

データによる裏付けのあるファクト(事実)を、人はそのまま受け入れられないことは多々あります。臭いものには蓋をするかのような態度にでます。都合のいい偽ファクト(事実)をデータから作り、ファクト(事実)を自ら創造すべきだと言わんばかりに、上手くことを運ぼうとする人もいます。今回は、「データサイエンティストに必要な鈍感力」というお話しをします。

 

【目次】
1.クライアントの望む結果を提供するリサーチャー
2.検査結果を偽造するエンジニア
3.場当たり的に結果を捻じ曲げるデータサイエンティスト
4.ファクト(事実)を受け入れる力

 

【この連載の前回:データ分析講座(その237)顧客特性を使いこなしデータ活用へのリンク】

1.クライアントの望む結果を提供するリサーチャー

10数年前、まだデータサイエンスだのAIだの機械学習だのがもてはやされる前のお話しです。過去データの再分析依頼を受けたとき、ある恐ろしいことを垣間見ました。恐ろしいこととは、「某リサーチ会社が、依頼主である消費財メーカーのブランドマネージャーが望むの調査結果を、意図的に出していた」というものです。

 

「まぁ、そういうこと昔からあるよね……」と思われる人もいるかもしれません。ただ、望む結果を得たところでそれはファクト(事実)ではありません。

 

間違った思い込み(望む結果)をデータで強化し、恐ろしい方向にもっていく可能性すらあります。データによる裏付けのあるファクト(事実)をもとにマーケティング活動しているのに上手くいかない、そういうことが起こり得ます。

 

2.検査結果を偽造するエンジニア

ここ20数年、定期的に日本の大手企業などで、品質系のデータをごまかしたニュースが流れます。ごまかした人は、自分たちが望む結果が欲しいがために偽造したのでしょう。都合のいい偽ファクト(事実)をデータから作っても、現実に起こっているファクト(事実)まで捻じ曲げることはできません。恐ろしいことです。

 

3.場当たり的に結果を捻じ曲げるデータサイエンティスト

ここ5年ぐらいのお話しですが、クライアントの望む結果を提供するデータサイエンティストも登場してきました。分析結果や予測結果などが、結果的にクライアントの望む結果であれば問題はないかと思いますが、そうでない場合どうなるでしょうか。

 

間違った思い込み(望む結果)をデータで強化し、恐ろしい方向にもっていく可能性すらあります。これも恐ろしいことです。

 

4.ファクト(事実)を受け入れる力

多くの人にとって、自分の都合の悪いファクト(事実)をストレートに受け入れることは、非常に困難です。心の中で葛藤が起こりフラストレーションを高め、不機嫌になったり深く悩んだりすることでしょう。

 

そういう状態のとき、不都合なファクト(事実)を突き付けられ...

データ分析

 

データによる裏付けのあるファクト(事実)を、人はそのまま受け入れられないことは多々あります。臭いものには蓋をするかのような態度にでます。都合のいい偽ファクト(事実)をデータから作り、ファクト(事実)を自ら創造すべきだと言わんばかりに、上手くことを運ぼうとする人もいます。今回は、「データサイエンティストに必要な鈍感力」というお話しをします。

 

【目次】
1.クライアントの望む結果を提供するリサーチャー
2.検査結果を偽造するエンジニア
3.場当たり的に結果を捻じ曲げるデータサイエンティスト
4.ファクト(事実)を受け入れる力

 

【この連載の前回:データ分析講座(その237)顧客特性を使いこなしデータ活用へのリンク】

1.クライアントの望む結果を提供するリサーチャー

10数年前、まだデータサイエンスだのAIだの機械学習だのがもてはやされる前のお話しです。過去データの再分析依頼を受けたとき、ある恐ろしいことを垣間見ました。恐ろしいこととは、「某リサーチ会社が、依頼主である消費財メーカーのブランドマネージャーが望むの調査結果を、意図的に出していた」というものです。

 

「まぁ、そういうこと昔からあるよね……」と思われる人もいるかもしれません。ただ、望む結果を得たところでそれはファクト(事実)ではありません。

 

間違った思い込み(望む結果)をデータで強化し、恐ろしい方向にもっていく可能性すらあります。データによる裏付けのあるファクト(事実)をもとにマーケティング活動しているのに上手くいかない、そういうことが起こり得ます。

 

2.検査結果を偽造するエンジニア

ここ20数年、定期的に日本の大手企業などで、品質系のデータをごまかしたニュースが流れます。ごまかした人は、自分たちが望む結果が欲しいがために偽造したのでしょう。都合のいい偽ファクト(事実)をデータから作っても、現実に起こっているファクト(事実)まで捻じ曲げることはできません。恐ろしいことです。

 

3.場当たり的に結果を捻じ曲げるデータサイエンティスト

ここ5年ぐらいのお話しですが、クライアントの望む結果を提供するデータサイエンティストも登場してきました。分析結果や予測結果などが、結果的にクライアントの望む結果であれば問題はないかと思いますが、そうでない場合どうなるでしょうか。

 

間違った思い込み(望む結果)をデータで強化し、恐ろしい方向にもっていく可能性すらあります。これも恐ろしいことです。

 

4.ファクト(事実)を受け入れる力

多くの人にとって、自分の都合の悪いファクト(事実)をストレートに受け入れることは、非常に困難です。心の中で葛藤が起こりフラストレーションを高め、不機嫌になったり深く悩んだりすることでしょう。

 

そういう状態のとき、不都合なファクト(事実)を突き付けられると、突っぱねたり怒ったり聞く耳を持たなくなったり、何かと厄介です。

 

そういうクライアントの状態を察し、クライアントの望む結果を提供するリサーチャーやデータサイエンティストが出てくるのではないかと思います。人によっては、人の好さが禍して善意でそのようなことを実施しているケースもあるかもしれません。不都合でもファクト(事実)を突き付けられるある種の鈍感力が必要なのかもしれません。

 

◆データ分析講座の注目記事紹介

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
データサイエンス波及の5つのポイント データ分析講座(その122)

◆ データサイエンス、小さく始め大きく波及  データサイエンス・ 機械学習・ AIと、夢を大きく持つことはいいことですが、足下無視で進めることはでき...

◆ データサイエンス、小さく始め大きく波及  データサイエンス・ 機械学習・ AIと、夢を大きく持つことはいいことですが、足下無視で進めることはでき...


データサイエンスで成果を出さないときの共通点 データ分析講座(その120)

◆ 目的を明確にしてもデータサイエンスで失敗するのか  データサイエンスは「目的を明確にすること」が大事だとよくいわれます。これはデータサイエンスに...

◆ 目的を明確にしてもデータサイエンスで失敗するのか  データサイエンスは「目的を明確にすること」が大事だとよくいわれます。これはデータサイエンスに...


横展開という悪魔 データ分析講座(その277)

  「上手くいったものを横展開すると上手くいく」というのは、時と場合によっては幻想かもしれません。少なくても、データ活用のケースでは、幻想...

  「上手くいったものを横展開すると上手くいく」というのは、時と場合によっては幻想かもしれません。少なくても、データ活用のケースでは、幻想...


「情報マネジメント一般」の活用事例

もっと見る
‐販路開拓に関する問題 第2回‐ 製品・技術開発力強化策の事例(その18)

 販路開拓に関する問題点、次に示す4点について、第1回として、1と2項を解説しました。今回は、第2回として、3と4項を解説します。        1....

 販路開拓に関する問題点、次に示す4点について、第1回として、1と2項を解説しました。今回は、第2回として、3と4項を解説します。        1....


中小製造業のウェブ戦略

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...

 中小製造業がウェブサイトを立ち上げる際、その目的として「自社の信用力を高めるための会社概要的な役割」と考える経営者も少なくない。しかし、当社のクライアン...


簡易版DX/IoTから機械学習への移行

  DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に 産業界のニュースなどをインターネットで読んでいると、DX...

  DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に 産業界のニュースなどをインターネットで読んでいると、DX...