データサイエンティストとは データ分析講座(その109)

更新日

投稿日

データ分析

◆ データサイエンティストとデータエンジニアは混同されやすい

 データサイエンティストは何者なのか…。最近、エンジニアである機械学習エンジニア(もしくはデータエンジニア)と、データサイエンティストが混同される不幸が、ちょいちょい見受けられます。似ているようで似ていない。そもそも、データサイエンティストはエンジニアではない。今回は「データサイエンティストとデータエンジニアは混同されやすい」というお話しをします。

1. データサイエンティスト:SAS社の定義

 定義は色々あります。以下はデータ分析系のツールの老舗、SAS社の定義です。

 データ・サイエンティストとは様々な意思決定の局面において、データに基づいて合理的な判断を行えるように意思決定者をサポートする職務またはそれを行う人のことです。

 細かい部分はさておき、異論のある人は少ないことでしょう。この定義から考えると、データサイエンティストの役割は「データに基づき合理的な判断を行えるように意思決定者をサポートする」ということになります。ポイントは「データに基づいて」という部分が他の意思決定をサポートする職務と異なります。

2. データサイエンティスト:私の定義

 私なりの定義を述べます。SAS社の定義プラスアルファな感じになります。

 データサイエンティストの役割は「意思決定者に対し、データに基づいた気の利いたレコメンド(勧める)する人(もしくは、その自動化を実現する人)」となるのではないかと思います。「サポート」を「レコメンド」としています。

3.「サポート」ではなく「レコメンド」

 おそらく「サポート」の中に「レコメンド」も含まれると思われます。

 「レコメンド」以外の「サポート」として、例えば「見える化」や「モニタリングレポートの作成」、「分析結果の提供」などもあることでしょう。しかし、具体的に何をすべきなのかが見えてこないと、ビジネス成果を掴むことはできません。では、どうすべきか、ということで、具体的に何をすべきなのかレコメンドすればいいとなります。

 レコメンドといっても、具体的にやるべきことをストレートに伝えることもありますし、やるべきことを考えさせる材料を提供するという方法もあることでしょう。つまり、提供された分析結果などを基に、何かしら意思決定する人(現場)が、何をすべきかを明確にすることができるという状態をつくれたら、それはレコメンドとなることでしょう。

4.「レコメンド」の例

 レコメンドには色々なやり方があります。具体的に一つだけアクション候補を提示する方法が最もシンプルです。また幅を持たせたり、複数の選択肢を提示する方法もよくあります。電車の経路検索や、ECサイトのレコメンド商品などを思い浮かべて頂けると分かりやすいことでしょう。

 分析レポートとして提供する場合「提言」という形でレコメンドをすることが多いことでしょう。レポートですのでその提言の数的根拠が提供されています。意思決定する人(現場)は、そのレポートに基づいて「あーでもない、こーでもない」と考え、実際にすべきことを検討していくことでしょう。最近ではBI(ビジネスインテリジェンス)のダッシュボード()として、分析レポートを提供するケースも増えています。ツール上で意思決定する人(現場)は直接深堀分析ができるのが特徴です。
ダッシュボード…複数の情報を一つにまとめ、一目でデータが把握できるようにする可視化ツール

5.データエンジニア

 データサイエンティストとデータエンジニアはコアスキルに違いがあり、コアスキルで比較するとその差が明確になります。データサイエンティストのコアスキルとは「数学や統計学(人によっては物理学)のバックグランドを持ち、高度な分析を実施したり、機械学習などのモデルを構築する」となるかと思います。

 データエンジニアのコアスキルとは「JavaやScala、Pythonなどプログラミングのバックグランドを持ち、分散シ...

データ分析

◆ データサイエンティストとデータエンジニアは混同されやすい

 データサイエンティストは何者なのか…。最近、エンジニアである機械学習エンジニア(もしくはデータエンジニア)と、データサイエンティストが混同される不幸が、ちょいちょい見受けられます。似ているようで似ていない。そもそも、データサイエンティストはエンジニアではない。今回は「データサイエンティストとデータエンジニアは混同されやすい」というお話しをします。

1. データサイエンティスト:SAS社の定義

 定義は色々あります。以下はデータ分析系のツールの老舗、SAS社の定義です。

 データ・サイエンティストとは様々な意思決定の局面において、データに基づいて合理的な判断を行えるように意思決定者をサポートする職務またはそれを行う人のことです。

 細かい部分はさておき、異論のある人は少ないことでしょう。この定義から考えると、データサイエンティストの役割は「データに基づき合理的な判断を行えるように意思決定者をサポートする」ということになります。ポイントは「データに基づいて」という部分が他の意思決定をサポートする職務と異なります。

2. データサイエンティスト:私の定義

 私なりの定義を述べます。SAS社の定義プラスアルファな感じになります。

 データサイエンティストの役割は「意思決定者に対し、データに基づいた気の利いたレコメンド(勧める)する人(もしくは、その自動化を実現する人)」となるのではないかと思います。「サポート」を「レコメンド」としています。

3.「サポート」ではなく「レコメンド」

 おそらく「サポート」の中に「レコメンド」も含まれると思われます。

 「レコメンド」以外の「サポート」として、例えば「見える化」や「モニタリングレポートの作成」、「分析結果の提供」などもあることでしょう。しかし、具体的に何をすべきなのかが見えてこないと、ビジネス成果を掴むことはできません。では、どうすべきか、ということで、具体的に何をすべきなのかレコメンドすればいいとなります。

 レコメンドといっても、具体的にやるべきことをストレートに伝えることもありますし、やるべきことを考えさせる材料を提供するという方法もあることでしょう。つまり、提供された分析結果などを基に、何かしら意思決定する人(現場)が、何をすべきかを明確にすることができるという状態をつくれたら、それはレコメンドとなることでしょう。

4.「レコメンド」の例

 レコメンドには色々なやり方があります。具体的に一つだけアクション候補を提示する方法が最もシンプルです。また幅を持たせたり、複数の選択肢を提示する方法もよくあります。電車の経路検索や、ECサイトのレコメンド商品などを思い浮かべて頂けると分かりやすいことでしょう。

 分析レポートとして提供する場合「提言」という形でレコメンドをすることが多いことでしょう。レポートですのでその提言の数的根拠が提供されています。意思決定する人(現場)は、そのレポートに基づいて「あーでもない、こーでもない」と考え、実際にすべきことを検討していくことでしょう。最近ではBI(ビジネスインテリジェンス)のダッシュボード()として、分析レポートを提供するケースも増えています。ツール上で意思決定する人(現場)は直接深堀分析ができるのが特徴です。
ダッシュボード…複数の情報を一つにまとめ、一目でデータが把握できるようにする可視化ツール

5.データエンジニア

 データサイエンティストとデータエンジニアはコアスキルに違いがあり、コアスキルで比較するとその差が明確になります。データサイエンティストのコアスキルとは「数学や統計学(人によっては物理学)のバックグランドを持ち、高度な分析を実施したり、機械学習などのモデルを構築する」となるかと思います。

 データエンジニアのコアスキルとは「JavaやScala、Pythonなどプログラミングのバックグランドを持ち、分散システムやビッグデータを専門とした高度なプログラミングやシステム構築のスキルを持つ」となるかと思います。

 よって、高度な分析を実施したりモデル構築をする人をデータサイエンティスト、それをシステム上で実現する人がデータエンジニアという感じになるかと思いますので、データサイエンティストに高度なプログラミングやシステム構築を期待するのは、違うということになります。

6. 混同されると不幸なことになる

 データを扱うという意味では同じですが、求められている仕事やキャリアパス、教育などを考えると大きく異なってきます。数学的なバックグランドの必要な、高度な分析やモデル構築をデータエンジニアに求めても酷というものです。またシステム構築や計算速度の高速化をデータサイエンティストに求めても同じです。実際「RやPythonなどの既存のライブラリーを使えば数学素養は必要ない! 」というわけにいかないのがデータ分析やモデル構築の世界です。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
見える化のその先へ データ分析講座(その86)

◆ 見える化のその先へ進むために、データ分析活用上必要なこと  「見える化」の掛け声とともに、何かしらのデータ蓄積基盤を整備し「見える化」に向けて動...

◆ 見える化のその先へ進むために、データ分析活用上必要なこと  「見える化」の掛け声とともに、何かしらのデータ蓄積基盤を整備し「見える化」に向けて動...


3つの市場シェアとは データ分析講座(その256)

  【この連載の前回:データ分析講座(その255)生存時間分析とはへのリンク】   簡単に計算できそうでできない指標の1つに...

  【この連載の前回:データ分析講座(その255)生存時間分析とはへのリンク】   簡単に計算できそうでできない指標の1つに...


合成データとは、そのメリットや注意点:データ分析講座(その327)

  AI活用の前に立ちはだかる壁の1つが、AIを構成する機械学習モデル(数理モデル)を作るためのデータ不足です。データの量や質が不十分だと...

  AI活用の前に立ちはだかる壁の1つが、AIを構成する機械学習モデル(数理モデル)を作るためのデータ不足です。データの量や質が不十分だと...


「情報マネジメント一般」の活用事例

もっと見る
デジタルデータの保存とは

        今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...

        今回は、地震災害等を想定して、デジタルデータの保存に焦点を当てて、主なバックアップ方法と長所...


電子メール、簡潔過ぎると逆効果

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...


P値で行う統計リテラシー判定

 「ピーチ」って聞いたら何を連想しますか、統計を学んでいる人に取っては「 P値 」が思い浮かぶはずです。統計学の素養がある程度備わっているか一言で知ろうと...

 「ピーチ」って聞いたら何を連想しますか、統計を学んでいる人に取っては「 P値 」が思い浮かぶはずです。統計学の素養がある程度備わっているか一言で知ろうと...