取引履歴データ データ分析講座(その9)

更新日

投稿日

 

情報マネジメント

◆ 営業データ分析は、どの企業にもある「取引履歴データ」だけで成果は出る

 「取引履歴ぐらいしか、データ無いんだけど……」確かに、そこの企業にも必ずあるのが取引データです。これがないと、PL(損益計算書)もBS(貸借対照表)も作れません。そもそも、企業活動に差しさわりがあります。

1. 必ずある「取引履歴データ」(顧客の購買履歴データ)

 顧客との取引履歴データ。顧客側から見れば、購買履データです。他社の状況も分かれば最高ですが、分からないので、一旦は、自社と顧客との間の取引履歴データを分析しましょう。この営業データは必ずあります。無ければ企業として活動ができません。受注したのに受注した商品やサービスなどの商材が何のか分からない。いつ受注したのかも分からない。なんてことはないからです。

 この取引履歴データを、営業データとして分析するだけでも多くのことが分かります。もちろん、CRMのデータのように、受注に至るまでの経緯が分かるともっと良いです。しかし、いきなり完璧なCRMのデータが集まることはありません。取引履歴データで営業データ分析を始めるのが、取り組みやすいし成果も早く出やすいでしょう。

2. データ分析:レコメンドに使える

 「取引履歴データ」(顧客の購買履データ)で営業データ分析をするとき、もっとも成果の出やすいのがレコメンドです。レコメンドとは、顧客が「次」に購入しそうな商材(商品や製品、サービスなど)をお勧めすることです。闇雲に商材(商品や製品、サービスなど)を顧客に勧めても、購入する確率は大きくないでしょう。場合によっては、顧客に嫌がられて関係悪化に繋がります。

 未購入で購入確率の高い商材(商品や製品、サービスなど)が分かれば、非常にありがたい。そのための営業データ分析がレコメンド分析です。ある程度自動化することができるため、最近はインターネットのECサイト(例:AMAZONなど)に訪問すると、「よく一緒に購入されている商品」や「この商品を買った人はこんな商品も買っています」などと自動的にレコメンドされます。

 顧客と購入した商材が分かれば、このような営業データ分析をすることができます。具体的には、レコメンドのリストを顧客ごとに作っていきます。営業データ分析の手法としては、協調フィルタリングなどが有名です。

3. データ分析:マチュリティ・モデルに使える

 レコメンド・リストは、今何を勧めるべきかという断片的なものです。このレコメンドを時系列化したのがマチュリティ・モデルです。先ずAという商材(商品や製品、サービスなど)を購入し、次にBという商材(商品や製品、サービスなど)を購入し、さらにその次にCという商材(商品や製品、サービスなど)を購入する……

 色々な商材(商品や製品、サービスなど)を購入していくうちに、顧客ロイヤルティが高まり、最終的にはロイヤル顧客(お得意様)になるという概念的なモデルです。「取引履歴データ」(顧客の購買履データ)で営業データ分析をすることで、このような傾向が見えてきます。そして、ロイヤル顧客(お得意様)化するパターンはいくつか発見され、いくつものパターンの中に共通するパターンも見えてきます。それをもとに、マチュリティ・モデルを作ります。営業データ分析の手法としては、パターン・マイニングなどがあります。

4. データ分析:新規顧客の取捨選択に使える

 リード(見込み顧客)の新規顧客化にはエネルギーが必要になります。既存顧客を維持するのに比べ、多大なる時間と労力が必要になります。そのため、「受注しにくいリード(見込み顧客)をだらだら追いかけてしまい、時間を浪費してしまう」や、「せっかく受注しても受注金額が安かったり、解約されてしまい、労力の割に報われない」といった問題があります。

 この問題は、リード(見込み顧客)の「新規受注率」や、受注したときの「受注金額」や「LTV」(顧客生涯価値)が分かれば、ある程度解決されることでしょう。なぜならば、「新規受注率」が低かったり、「受注金額」や「LTV」(顧客生涯価値)の低いリード(見込み顧客)を避けることができるからです。できれば、「新規受注率」が高く、「受注金額」や「LTV」(顧客生涯価値)の高いリード(見込み顧客)を狙いましょう。営業データ分析の手法としては、罰則付き回帰分析などがあります。

5. 理想は「CRMデータ」、現実は「取引履歴データ」(顧客の購買履歴データ)

 理想としては、CRMデータなどの営業プロセスが分かる営業データの分析です。しかし、現実的に分析できる営業データは、CRMデータで言えば受注時のデータ。つまり、「取引履歴データ」(顧客の購買履データ)による営業データ分析です。この「取引履歴データ」(顧客の購買履データ)の無い企業は皆無でしょう。これがないと、企業活動に差しさわりが出てきますし、PL(損益計算書)もBS(貸借対照表)を作れません。

 営業やマーケティング系のデータ分析は、企業の収益に直接影響します。何に役に立つか分からないデータ分析ではなく、売上や利益などの収益性を向上させるデータ分析をします。そのため、営業やマーケティング系のデータ分析の成果は、非常...

 

情報マネジメント

◆ 営業データ分析は、どの企業にもある「取引履歴データ」だけで成果は出る

 「取引履歴ぐらいしか、データ無いんだけど……」確かに、そこの企業にも必ずあるのが取引データです。これがないと、PL(損益計算書)もBS(貸借対照表)も作れません。そもそも、企業活動に差しさわりがあります。

1. 必ずある「取引履歴データ」(顧客の購買履歴データ)

 顧客との取引履歴データ。顧客側から見れば、購買履データです。他社の状況も分かれば最高ですが、分からないので、一旦は、自社と顧客との間の取引履歴データを分析しましょう。この営業データは必ずあります。無ければ企業として活動ができません。受注したのに受注した商品やサービスなどの商材が何のか分からない。いつ受注したのかも分からない。なんてことはないからです。

 この取引履歴データを、営業データとして分析するだけでも多くのことが分かります。もちろん、CRMのデータのように、受注に至るまでの経緯が分かるともっと良いです。しかし、いきなり完璧なCRMのデータが集まることはありません。取引履歴データで営業データ分析を始めるのが、取り組みやすいし成果も早く出やすいでしょう。

2. データ分析:レコメンドに使える

 「取引履歴データ」(顧客の購買履データ)で営業データ分析をするとき、もっとも成果の出やすいのがレコメンドです。レコメンドとは、顧客が「次」に購入しそうな商材(商品や製品、サービスなど)をお勧めすることです。闇雲に商材(商品や製品、サービスなど)を顧客に勧めても、購入する確率は大きくないでしょう。場合によっては、顧客に嫌がられて関係悪化に繋がります。

 未購入で購入確率の高い商材(商品や製品、サービスなど)が分かれば、非常にありがたい。そのための営業データ分析がレコメンド分析です。ある程度自動化することができるため、最近はインターネットのECサイト(例:AMAZONなど)に訪問すると、「よく一緒に購入されている商品」や「この商品を買った人はこんな商品も買っています」などと自動的にレコメンドされます。

 顧客と購入した商材が分かれば、このような営業データ分析をすることができます。具体的には、レコメンドのリストを顧客ごとに作っていきます。営業データ分析の手法としては、協調フィルタリングなどが有名です。

3. データ分析:マチュリティ・モデルに使える

 レコメンド・リストは、今何を勧めるべきかという断片的なものです。このレコメンドを時系列化したのがマチュリティ・モデルです。先ずAという商材(商品や製品、サービスなど)を購入し、次にBという商材(商品や製品、サービスなど)を購入し、さらにその次にCという商材(商品や製品、サービスなど)を購入する……

 色々な商材(商品や製品、サービスなど)を購入していくうちに、顧客ロイヤルティが高まり、最終的にはロイヤル顧客(お得意様)になるという概念的なモデルです。「取引履歴データ」(顧客の購買履データ)で営業データ分析をすることで、このような傾向が見えてきます。そして、ロイヤル顧客(お得意様)化するパターンはいくつか発見され、いくつものパターンの中に共通するパターンも見えてきます。それをもとに、マチュリティ・モデルを作ります。営業データ分析の手法としては、パターン・マイニングなどがあります。

4. データ分析:新規顧客の取捨選択に使える

 リード(見込み顧客)の新規顧客化にはエネルギーが必要になります。既存顧客を維持するのに比べ、多大なる時間と労力が必要になります。そのため、「受注しにくいリード(見込み顧客)をだらだら追いかけてしまい、時間を浪費してしまう」や、「せっかく受注しても受注金額が安かったり、解約されてしまい、労力の割に報われない」といった問題があります。

 この問題は、リード(見込み顧客)の「新規受注率」や、受注したときの「受注金額」や「LTV」(顧客生涯価値)が分かれば、ある程度解決されることでしょう。なぜならば、「新規受注率」が低かったり、「受注金額」や「LTV」(顧客生涯価値)の低いリード(見込み顧客)を避けることができるからです。できれば、「新規受注率」が高く、「受注金額」や「LTV」(顧客生涯価値)の高いリード(見込み顧客)を狙いましょう。営業データ分析の手法としては、罰則付き回帰分析などがあります。

5. 理想は「CRMデータ」、現実は「取引履歴データ」(顧客の購買履歴データ)

 理想としては、CRMデータなどの営業プロセスが分かる営業データの分析です。しかし、現実的に分析できる営業データは、CRMデータで言えば受注時のデータ。つまり、「取引履歴データ」(顧客の購買履データ)による営業データ分析です。この「取引履歴データ」(顧客の購買履データ)の無い企業は皆無でしょう。これがないと、企業活動に差しさわりが出てきますし、PL(損益計算書)もBS(貸借対照表)を作れません。

 営業やマーケティング系のデータ分析は、企業の収益に直接影響します。何に役に立つか分からないデータ分析ではなく、売上や利益などの収益性を向上させるデータ分析をします。そのため、営業やマーケティング系のデータ分析の成果は、非常に理解しやすく、すぐにその効果は現れます。少なくとも1年単位で比較すると顕著にでてきます。

しかし、とくに営業は「人の要素」が大きいため、「やる気」の問題が非常に成果を左右します。マーケティング系も結局は人の要素が少なからず入ってくるため、同様に「やる気」の問題が少なからず影響します。では、どうすればよいのか?

6. 営業データ分析のモチベーションをすぐ高めよう

 綺麗なCRMデータが溜まるのを待っていては、いつまでも営業データ分析はできません。今ある「取引履歴データ」(顧客の購買履データ)で、営業データ分析を実施し、営業データ活用を実現するのが良いでしょう。今ある「取引履歴データ」(顧客の購買履データ)ですぐやる、というのが最大のポイントです。この営業データ活用の小さな成功体験が、綺麗なCRMデータの蓄積を後押しします。営業データ分析のモチベーションが高まるからです。

 ちなみに、CRMデータは人が手入力するため、データが汚い状態が多いです。綺麗なCRMデータの蓄積を後押しするとは、CRMへのデータ入力のモチベーションが高まり、比較的綺麗なデータが溜まりやすくなるということです。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
セールスアナリティクス データ分析講座(その12)

  ◆ 営業データ分析の進め方は、小学校のときの学芸会だった  「営業で、データ分析活用をしたいけど、進め方が分からない」、営業で、いざ...

  ◆ 営業データ分析の進め方は、小学校のときの学芸会だった  「営業で、データ分析活用をしたいけど、進め方が分からない」、営業で、いざ...


データ活用の成否を握るのは周辺人 データ分析講座(その295)

  組織の中の方に染まってしまうほど、物事は進め難くなるようです。生存本能的に、その組織の崩壊を防ぐことが自身の崩壊を防ぐのではないかと、...

  組織の中の方に染まってしまうほど、物事は進め難くなるようです。生存本能的に、その組織の崩壊を防ぐことが自身の崩壊を防ぐのではないかと、...


データサイエンス波及の5つのポイント データ分析講座(その122)

◆ データサイエンス、小さく始め大きく波及  データサイエンス・ 機械学習・ AIと、夢を大きく持つことはいいことですが、足下無視で進めることはでき...

◆ データサイエンス、小さく始め大きく波及  データサイエンス・ 機械学習・ AIと、夢を大きく持つことはいいことですが、足下無視で進めることはでき...


「情報マネジメント一般」の活用事例

もっと見る
‐技術開発の目標について 第1回‐  製品・技術開発力強化策の事例(その15)

 前回の事例その14に続いて解説します。製品開発を目指している企業の中には、テ-マが見つかったら、または、アイデアが閃いたら開発に取り組む。そのような淡い...

 前回の事例その14に続いて解説します。製品開発を目指している企業の中には、テ-マが見つかったら、または、アイデアが閃いたら開発に取り組む。そのような淡い...


守秘義務は情報社会の命綱

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...


‐時代の流れを意識した開発テ-マの設定‐  製品・技術開発力強化策の事例(その5)

 前回の事例その4に続いて解説します。時代の流れに沿う開発テ-マとして、最近では、高齢者介護機器、環境関連機器、省エネ機器、情報技術(IT)等に関心が注が...

 前回の事例その4に続いて解説します。時代の流れに沿う開発テ-マとして、最近では、高齢者介護機器、環境関連機器、省エネ機器、情報技術(IT)等に関心が注が...