ダイナミックプライシングとは データ分析講座(その181)

更新日

投稿日

 

 

◆ 新聞売り子問題とダイナミックプライシング

 データ活用が進む中、ダイナミックプライシングの動きが活発化しています。ダイナミックプライシングとは、需要と供給のバランスを考え、動的に価格を設定することです。航空機のチケットなどで有名ですが、実際は、最終的に手作業で実施していところが多いようです。今回は「新聞売り子問題とダイナミックプライシング」というお話しをします。

【目次】

1. 価格は一定のとき、仕入れ量が重要になる
 (1)予測値は分布する
 (2)利益を最大化する「最適な仕入れ量」
2. 価格が変動すると、さらに面白くなる
3. 利益を最大化するダイナミックな価格設定
4. 今回のまとめ

 

1. データ分析:価格は一定のとき、仕入れ量が重要になる

 

データ分析

 

 ダイナミックプライシングではなく、価格が一定のときに重要になるのは、仕入れ量です。仕入れが需要よりも多い場合、売れ残ります。仕入れが需要よりも少ない場合、売り切れ機会損失が発生します。理想は、売れ残りも機会損失も発生しない、仕入れ量です。そのためには、需要予測が必要になります。

(1) 予測値は分布する

 需要予測をするとき、「10万5千個売れそうです」とピンポイントで予測しても、実際はそうなることは稀です。ここで予測すべきは分布です。

 例えば……

  • 8万個未満売れる可能性が5%
  • 8万~9万個未満売れる可能性が10%
  • 9万~10万個未満売れる可能性が20%
  • 10万~11万個未満売れる可能性が30%
  • 11万~12万個未満売れる可能性が20%
  • 12万~13万個未満売れる可能性が10%
  • 13万個以上売れる可能性が5%

 ……といった感じです。一番簡単な、分布の予測の仕方は、過去データから集計し分布を求めることです。

(2) 利益を最大化する「最適な仕入れ量」

 

データ分析

 

 このような分布が求まれば、利益を最大化する「最適な仕入れ量」を計算することができます。このような問題を、「新聞売り子問題」と呼ばれている、古典的なデータ分析・活用の問題です。事前に、機会損失額と売れ残りコストの計算方法を決めておく必要があります。

 機会損失額は比較的簡単に計算できますが、売れ残りコストの計算方法は、どのような商材を扱うかで変わってきます。例えば、食品などの廃棄する必要がある場合には、単に原価だけを考えるのではなく廃棄コストも考慮するあります。耐久財の場合には、在庫の管理コストなどが発生することでしょう。

 

2. データ分析:価格が変動すると、さらに面白くなる

 このような新聞売り子問題の中、価格が変動すると、現場からすると「ややこしい」と思うことでしょう。データ分析・活用的には、価格が変動すると、さらに面白くなります。新聞売り子問題の出発点は、需要予測でした。予測した需要の分布をもとに、利益が最大化する仕入れ量を求めるのです。

 ダイナミックプライシングは、需要予想をするときに、設定した価格に対しどの程度の需要が見込めるのかを予測します。つまり、通常の需要予測と異なり「価格」要因が前面に押し出されてくる感じです。通常の需要予測も、値引きやキャンペーンなどの要因を加味するので、似たようなことを実施していたかもしれません。大きな違いは、値引きだけでなく値上がりもある、ということです。

 

3. データ分析:利益を最大化するダイナミックな価格設定

 

データ分析

 

 ダイナミックプライシングによって、利益を最大化する仕入れから、利益を最大化するダイナミックな価格設定へ変化します。ダイナミックプライシングというぐらいですから、機械的にほぼリアルタイムに価格設定ができないと、ダイナミックではないでしょう。従来の手作業ベースの価格設定だと、破綻をきたします。まさに、データをフル活用した価格設定です。とは言え、データだけに頼るのも危険なので、最終的には人的な介入があることでしょう。

 この辺りは、ダイナミックプライシングのロジックさえ検討し固めてしまえば、実現するのはそれほど難しくないと思います。

 

4. 今回のまとめ

 今回は「新聞売り子問題とダイナミックプライシング」というお話しをしました。「新聞売り子問題」とは、古典的なデータ分析・活用の問題で、機会損失と売れ残りのバランスを考え、仕入れ量を決める問題です。一言で言うと、「利益を最大化する仕入れ」の問題です。

 新聞売り子問題の出発点は、需要予測です。予測した需要の分布をもとに、利益が最大化する仕入れ量を求めるから...

 

 

◆ 新聞売り子問題とダイナミックプライシング

 データ活用が進む中、ダイナミックプライシングの動きが活発化しています。ダイナミックプライシングとは、需要と供給のバランスを考え、動的に価格を設定することです。航空機のチケットなどで有名ですが、実際は、最終的に手作業で実施していところが多いようです。今回は「新聞売り子問題とダイナミックプライシング」というお話しをします。

【目次】

1. 価格は一定のとき、仕入れ量が重要になる
 (1)予測値は分布する
 (2)利益を最大化する「最適な仕入れ量」
2. 価格が変動すると、さらに面白くなる
3. 利益を最大化するダイナミックな価格設定
4. 今回のまとめ

 

1. データ分析:価格は一定のとき、仕入れ量が重要になる

 

データ分析

 

 ダイナミックプライシングではなく、価格が一定のときに重要になるのは、仕入れ量です。仕入れが需要よりも多い場合、売れ残ります。仕入れが需要よりも少ない場合、売り切れ機会損失が発生します。理想は、売れ残りも機会損失も発生しない、仕入れ量です。そのためには、需要予測が必要になります。

(1) 予測値は分布する

 需要予測をするとき、「10万5千個売れそうです」とピンポイントで予測しても、実際はそうなることは稀です。ここで予測すべきは分布です。

 例えば……

  • 8万個未満売れる可能性が5%
  • 8万~9万個未満売れる可能性が10%
  • 9万~10万個未満売れる可能性が20%
  • 10万~11万個未満売れる可能性が30%
  • 11万~12万個未満売れる可能性が20%
  • 12万~13万個未満売れる可能性が10%
  • 13万個以上売れる可能性が5%

 ……といった感じです。一番簡単な、分布の予測の仕方は、過去データから集計し分布を求めることです。

(2) 利益を最大化する「最適な仕入れ量」

 

データ分析

 

 このような分布が求まれば、利益を最大化する「最適な仕入れ量」を計算することができます。このような問題を、「新聞売り子問題」と呼ばれている、古典的なデータ分析・活用の問題です。事前に、機会損失額と売れ残りコストの計算方法を決めておく必要があります。

 機会損失額は比較的簡単に計算できますが、売れ残りコストの計算方法は、どのような商材を扱うかで変わってきます。例えば、食品などの廃棄する必要がある場合には、単に原価だけを考えるのではなく廃棄コストも考慮するあります。耐久財の場合には、在庫の管理コストなどが発生することでしょう。

 

2. データ分析:価格が変動すると、さらに面白くなる

 このような新聞売り子問題の中、価格が変動すると、現場からすると「ややこしい」と思うことでしょう。データ分析・活用的には、価格が変動すると、さらに面白くなります。新聞売り子問題の出発点は、需要予測でした。予測した需要の分布をもとに、利益が最大化する仕入れ量を求めるのです。

 ダイナミックプライシングは、需要予想をするときに、設定した価格に対しどの程度の需要が見込めるのかを予測します。つまり、通常の需要予測と異なり「価格」要因が前面に押し出されてくる感じです。通常の需要予測も、値引きやキャンペーンなどの要因を加味するので、似たようなことを実施していたかもしれません。大きな違いは、値引きだけでなく値上がりもある、ということです。

 

3. データ分析:利益を最大化するダイナミックな価格設定

 

データ分析

 

 ダイナミックプライシングによって、利益を最大化する仕入れから、利益を最大化するダイナミックな価格設定へ変化します。ダイナミックプライシングというぐらいですから、機械的にほぼリアルタイムに価格設定ができないと、ダイナミックではないでしょう。従来の手作業ベースの価格設定だと、破綻をきたします。まさに、データをフル活用した価格設定です。とは言え、データだけに頼るのも危険なので、最終的には人的な介入があることでしょう。

 この辺りは、ダイナミックプライシングのロジックさえ検討し固めてしまえば、実現するのはそれほど難しくないと思います。

 

4. 今回のまとめ

 今回は「新聞売り子問題とダイナミックプライシング」というお話しをしました。「新聞売り子問題」とは、古典的なデータ分析・活用の問題で、機会損失と売れ残りのバランスを考え、仕入れ量を決める問題です。一言で言うと、「利益を最大化する仕入れ」の問題です。

 新聞売り子問題の出発点は、需要予測です。予測した需要の分布をもとに、利益が最大化する仕入れ量を求めるからです。新聞売り子問題の場合、基本的に価格は一定です。もちろん、値引きやキャンペーンなどは考慮します。値引きはあっても値上がりという概念は、基本登場してきません。

 ダイナミックプライシングとは、需要と供給のバランスを考え、動的に価格を設定することです。値引きだけでなく値上がりもあります。航空機のチケットなどが有名です。基本的に価格が一定である新聞売り子問題に、価格がダイナミックに変わるようにした感じです。

 ダイナミックプライシングによって、利益を最大化する仕入れから、利益を最大化するダイナミックな価格設定へ変化します。ダイナミックプライシングは、ロジックさえ検討し固めてしまえば、実現するのはそれほど難しくないと思います。

 最初は、手作業ベースでデータ分析し、ダイナミックに価格を検討し運用することにはなるとは思います。興味のある方は、チャレンジしてみても面白いと思います。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
需要予測とは データ分析講座(その211)

  コロナ禍で分かったのは、状況に対する適応力が必要ということです。変化する状況に対し、柔軟な在庫や人員配置などが求められることでしょう。...

  コロナ禍で分かったのは、状況に対する適応力が必要ということです。変化する状況に対し、柔軟な在庫や人員配置などが求められることでしょう。...


より高度な分析にこだわる罠とは データ分析講座(その51)

◆ 高度なデータ分析にこだわるほど、データ活用から遠のくという悲しい現実  データ分析の実務を始めたころに、誰もが陥る罠があります。実は、人によって...

◆ 高度なデータ分析にこだわるほど、データ活用から遠のくという悲しい現実  データ分析の実務を始めたころに、誰もが陥る罠があります。実は、人によって...


分析に求められる洞察力の基礎とは データ分析講座(その55)

◆ 目的無きデータ分析にも意味はある。遠回りかもしれないが、良いこともある  よくデータ分析するとき、目的を明確にせよ! と言います。正しいでしょう...

◆ 目的無きデータ分析にも意味はある。遠回りかもしれないが、良いこともある  よくデータ分析するとき、目的を明確にせよ! と言います。正しいでしょう...


「情報マネジメント一般」の活用事例

もっと見る
中小企業のセキュリティ対策を考える

◆ 企業の情報セキュリティと新型コロナウィルス対策の今  先日、駅のプラットフォ-ムで並んでいる時に、控えめに咳をしたら、前に並んでいた人にすかさず...

◆ 企業の情報セキュリティと新型コロナウィルス対策の今  先日、駅のプラットフォ-ムで並んでいる時に、控えめに咳をしたら、前に並んでいた人にすかさず...


人的資源マネジメント:データ指向ものづくりがもたらす高い生産性

 今、ものづくりの現場が目指すべきは「データ指向ものづくり」だと思います。 今回は、インダストリー4.0のような次世代ものづくりの大波への備えともなる 「...

 今、ものづくりの現場が目指すべきは「データ指向ものづくり」だと思います。 今回は、インダストリー4.0のような次世代ものづくりの大波への備えともなる 「...


Excelの帳票を見直そう

 オフィス業務においては、マイクロソフトOfficeがデファクトスタンダードになっています。とりわけ活用されているのはExcelでしょう。Excelを使う...

 オフィス業務においては、マイクロソフトOfficeがデファクトスタンダードになっています。とりわけ活用されているのはExcelでしょう。Excelを使う...