前年踏襲という意味不明なロジックとは データ分析講座(その206)

更新日

投稿日

データ分析

 

予算などの計画値を考えるとき、前年同又は前年比1.1倍みたいな立て方があります。

例えば……

  • 前年これぐらい使っているから、来年も前年と同じぐらいでいこう!
  • 前年よりも売上を伸ばしたいから、今年は前年比1.1倍ぐらいでいこう!

……というものです。

 

前年を引き合いに出すことが、周囲を納得させる最大のロジックになっています。今回は、「前年踏襲という意味不明なロジックがデータ活用でもたまに登場する」というお話しをします。

【目次】

1.前年踏襲ロジック
(1)ポンコツな仮定の下でのデータ分析には限界がある
(2)最大の問題はロジックを疑わないこと
(3)間違いだと証明されない限り続く
2.不問の仮定をデータ分析で打破せよ

 

1.前年踏襲ロジック

前年踏襲ロジックとは、前年もしくは例年という概念を持ち出して、予算などの計画値を考えることです。数字ではなく「アクション」で考えると、「いつもやっているから、やる」ということになります。この前年踏襲ロジックを前提に、データ分析・活用(データサイエンス実践)をしている姿をたまに見ます。

例えば、決められた広告販促予算の中で最適な広告配分をする、などです。

 

この「決められた広告販促予算」が前年と同額であったり、前年比〇〇%という感じで、前年基準の前年踏襲ロジックになっているのです。このような仮定を設定しものごとを考えることを、前年踏襲ロジックといっています。

 

前年踏襲ロジックそのものの善し悪しの判断がない状態で、このロジックを使っているケースがあります。

 

(1)ポンコツな仮定の下でのデータ分析には限界がある

このような前年踏襲ロジックは、なかなか厄介です。

 

もし前提踏襲ロジックがポンコツであれば、その仮定の下で実施したデータ分析などはどうなるでしょうか? 素晴らしいものになるでしょうか?ポンコツな仮定の下でのデータ分析には限界があります。データ分析で得られたあろうベネフィットを十分に甘受できないことでしょう。もったいないです。

 

(2)最大の問題はロジックを疑わないこと

この場合の最大の問題は、前年踏襲ロジックのような、善し悪しの分からない仮定を疑わないことです。

 

お話しを聞くと……前年踏襲ロジックを使っている認識がありこれでいいのだろうかと思っている……という状態、つまり「未知の知」(知らないことを知っている)であるケースが多いです。

 

前年踏襲ロジックの善し悪しが証明されない限り、この仮定を後生大事に守り使い続けるようです。ちなみに最悪なのは、「未知の未知」(知らないことは知らない)の組織です。前年踏襲ロジックを無意識で使い続けている組織です。

 

(3)間違いだと証明されない限り続く

恐ろしいことに、間違いだと証明されない限り続くことがあります。

 

「いつもやっていることだから」という理屈で物事が進むケースです。「いつもやっていること」が間違いだと証明されない限り続きます。「いつもやっていること」が正解だという証明をしていないのにです。前年踏襲ロジックもその一つです。

 

この前年踏襲ロジックですが、善いとするケースもあれば、ダメというケースもあります。善し悪しは確かめてみないと分かりません。要は、ある仮定の下でデータ分析などをするときに、そもそもの仮定自体をデータ分析の対象とした方がいいということです。

 

2.不問の仮定をデータ分析で打破せよ

データ分析をするとき、なんだかんだと色々な仮定をおいて実施しています。

 

先ほど、「未知の知」(知らないことを知っている)と「未知の未知」(知らないことは知らない)という、ややこしいお話しをしました。データ分析をするときに置いている仮定も、「未知の知」のものと「未知の未知」のものがあります。少なくとも「未知の知」の仮定はデータ分析の力を借りて検証してみましょう。

 

例えば、前年踏襲ロジックを使っているが、そのロジックの善し悪しは分からないが何となく使って...

データ分析

 

予算などの計画値を考えるとき、前年同又は前年比1.1倍みたいな立て方があります。

例えば……

  • 前年これぐらい使っているから、来年も前年と同じぐらいでいこう!
  • 前年よりも売上を伸ばしたいから、今年は前年比1.1倍ぐらいでいこう!

……というものです。

 

前年を引き合いに出すことが、周囲を納得させる最大のロジックになっています。今回は、「前年踏襲という意味不明なロジックがデータ活用でもたまに登場する」というお話しをします。

【目次】

1.前年踏襲ロジック
(1)ポンコツな仮定の下でのデータ分析には限界がある
(2)最大の問題はロジックを疑わないこと
(3)間違いだと証明されない限り続く
2.不問の仮定をデータ分析で打破せよ

 

1.前年踏襲ロジック

前年踏襲ロジックとは、前年もしくは例年という概念を持ち出して、予算などの計画値を考えることです。数字ではなく「アクション」で考えると、「いつもやっているから、やる」ということになります。この前年踏襲ロジックを前提に、データ分析・活用(データサイエンス実践)をしている姿をたまに見ます。

例えば、決められた広告販促予算の中で最適な広告配分をする、などです。

 

この「決められた広告販促予算」が前年と同額であったり、前年比〇〇%という感じで、前年基準の前年踏襲ロジックになっているのです。このような仮定を設定しものごとを考えることを、前年踏襲ロジックといっています。

 

前年踏襲ロジックそのものの善し悪しの判断がない状態で、このロジックを使っているケースがあります。

 

(1)ポンコツな仮定の下でのデータ分析には限界がある

このような前年踏襲ロジックは、なかなか厄介です。

 

もし前提踏襲ロジックがポンコツであれば、その仮定の下で実施したデータ分析などはどうなるでしょうか? 素晴らしいものになるでしょうか?ポンコツな仮定の下でのデータ分析には限界があります。データ分析で得られたあろうベネフィットを十分に甘受できないことでしょう。もったいないです。

 

(2)最大の問題はロジックを疑わないこと

この場合の最大の問題は、前年踏襲ロジックのような、善し悪しの分からない仮定を疑わないことです。

 

お話しを聞くと……前年踏襲ロジックを使っている認識がありこれでいいのだろうかと思っている……という状態、つまり「未知の知」(知らないことを知っている)であるケースが多いです。

 

前年踏襲ロジックの善し悪しが証明されない限り、この仮定を後生大事に守り使い続けるようです。ちなみに最悪なのは、「未知の未知」(知らないことは知らない)の組織です。前年踏襲ロジックを無意識で使い続けている組織です。

 

(3)間違いだと証明されない限り続く

恐ろしいことに、間違いだと証明されない限り続くことがあります。

 

「いつもやっていることだから」という理屈で物事が進むケースです。「いつもやっていること」が間違いだと証明されない限り続きます。「いつもやっていること」が正解だという証明をしていないのにです。前年踏襲ロジックもその一つです。

 

この前年踏襲ロジックですが、善いとするケースもあれば、ダメというケースもあります。善し悪しは確かめてみないと分かりません。要は、ある仮定の下でデータ分析などをするときに、そもそもの仮定自体をデータ分析の対象とした方がいいということです。

 

2.不問の仮定をデータ分析で打破せよ

データ分析をするとき、なんだかんだと色々な仮定をおいて実施しています。

 

先ほど、「未知の知」(知らないことを知っている)と「未知の未知」(知らないことは知らない)という、ややこしいお話しをしました。データ分析をするときに置いている仮定も、「未知の知」のものと「未知の未知」のものがあります。少なくとも「未知の知」の仮定はデータ分析の力を借りて検証してみましょう。

 

例えば、前年踏襲ロジックを使っているが、そのロジックの善し悪しは分からないが何となく使っている場合には、前年踏襲ロジックそのものの善し悪しをデータの力で検証するということです。

 

どうやって検証するの? という疑問はあると思います。一番簡単なのは、その仮定を無くすか緩めるかして、データ分析をしてみることです。

 

例えば、広告販促の予算配分の前提として「総額予算は前年と同じ」というのがある場合は、「総額予算の仮定を排除する」であるとか「総額予算の仮定に幅を持たせる」などとし、その結果どうなるのかをデータの力で確かめてみるという感じです。

 

その結果、前年と同じ総額予算が最適という結論に達することもあります。

 

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
拡張分析とは:データ分析講座(その331)効率的なビジネス意思決定を支援

  ビジネスにおいてデータは重要な意思決定の礎となっています。しかし、そのデータに対する分析タスクと、分析した結果の解釈は、往々にして複雑...

  ビジネスにおいてデータは重要な意思決定の礎となっています。しかし、そのデータに対する分析タスクと、分析した結果の解釈は、往々にして複雑...


Excelで出来ること データ分析講座(その45)

◆ 売上分析の初心者も上級者も、結局Excel(エクセル)が大好きな理由  ある部品メーカーでは、それこそ売上分析のためのツールが、わんさか導入され...

◆ 売上分析の初心者も上級者も、結局Excel(エクセル)が大好きな理由  ある部品メーカーでは、それこそ売上分析のためのツールが、わんさか導入され...


生成AI(Generative AI)とは何か:データ分析講座(その320)

  生成AI は創造的な限界を押し広げることを可能にし、さまざまな業界に広範囲に影響を与えるのではないかと、期待されています。ただし、想像...

  生成AI は創造的な限界を押し広げることを可能にし、さまざまな業界に広範囲に影響を与えるのではないかと、期待されています。ただし、想像...


「情報マネジメント一般」の活用事例

もっと見る
現場情報の自動収集に道具だてを

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...

 一日の作業指示の出し方で、次のどちらの組織の管理レベルの改善がより進むでしょうか?        ・A社 ➡「x製品を◯個」     ・B...


‐販路開拓に関する問題 第1回‐  製品・技術開発力強化策の事例(その17)

 前回の事例その16に続いて解説します。開発が完了したから販売先を探す。そのような考え方で開発に従事することは根本的に間違っている事は既に述べました。開発...

 前回の事例その16に続いて解説します。開発が完了したから販売先を探す。そのような考え方で開発に従事することは根本的に間違っている事は既に述べました。開発...


ソフトウェア特許とは(その2)

4.ソフトウェア特許のとり方    前回のその1に続いて解説します。    ソフトウェア特許の取得方法にはノウハウがあります。特許のことを知らない...

4.ソフトウェア特許のとり方    前回のその1に続いて解説します。    ソフトウェア特許の取得方法にはノウハウがあります。特許のことを知らない...