問題解決フレームワークPPDACとは データ分析講座(その147)

更新日

投稿日

データ分析

 

 データを使い、実務的な課題をどのように解決していくのか、というデータ活用上の問題があります。幾つか方法がありますが、最も取り組みやすい問題解決フレームワークに、PPDACサイクルというものがあります。

 マネジメントサイクルでは有名なPDCA(Plan-Do-Check-Act)サイクルというものがありますが、PPDACサイクルはちょっと異なります。大きく異なるのは、PPDACサイクルがデータを使うことを前提にしていることです。厳密には、データというよりも情報といったほうがいいかもしれません。今回は「問題解決フレームワークPPDACとは」についてお話しします。

 

1、PPDACサイクル

 PPDACサイクルは、1990年代に作られたデータ分析による課題解決マネジメントサイクルです。以下の5つのステップで構成されています。

  •  P(Problem)   :課題の設定
  •  P(Plan)       :調査・分析の計画
  •  D(Data)      :情報収集(データを集めたり、ヒアリングしたりする)
  •  A(Analysis)  :情報の整理・集計・分析・数理モデル構築など
  •  C(Conclusion):とりあえずの結論

 PPDACは、P(Problem、課題設定)からスタートし → P(Plan、計画) → D(Data、データ収集) → A(Analysis、データ集計・分析・数理モデル構築など) → C(Conclusion、とりあえずの結論)の順番に進みます。

 Cまで進んだら、必要があれば再度Pに戻り、新たなPPDACがスタートします。要するに、PPDACを何度も回していくことになります。

 

(1) 実用的で誰にでも使える

 このサイクルの優れているところは、実用的で誰でも使えることです。小中学生がデータを活用した問題解決力を身につける教育でも使われています。しかも、私自身実際に使ってみて分かったことは、ビジネスの実務でも非常に有効であることです。

(2) 基本は何度も回す

 このPPDACサイクルは、時間をかけて高品質なサイクルを1回するのではなく、短時間にそこそこのサイクルを何回も回します。例えば、データ分析で何かしらの提言をするまでの期間が1週間であれば、5サイクル(1日1回ペース)回します。期間が1日であれば2サイクル(3時間に1回ペース)です。このようにサイクルを何回も回しながら、対応策の質を高めていきます。PPDACサイクルを1回転するたびに「とりあえずの結論(Conclusion)」を出していきます。

 

2、 3つのPPDACサイクル

 データ分析・活用を実現するには、次の3つのフェーズを順に実施する必要があります。

  • (1) テーマ設定フェーズ
  • (2) モデル構築フェーズ
  • (3) テスト運用フェーズ

 

(1) テーマ設定フェーズ

 「テーマ設定フェーズ」は、データ分析・活用のテーマを設定するフェーズです。理想は 「筋の良いテーマ」を探し、テーマとして設定することです。設定するテーマを間違うと、どんなに努力しても、なかなか成果を出すことが難しくなります。そのため、非常に重要になってきます。ちなみに、筋の良いテーマとは、効果が大きくやり易いテーマです。

(2) モデル構築フェーズ

 「モデル構築フェーズ」は、実際にデータなどを集め、データ分析で解決するテーマにとって必要なモデルなどを構築し、実務活用の準備をするフェーズです。実際にデータなどを集めるところから始めるため、テーマ設定フェーズで描いた絵が、実は実現できないということが、分かることもあります。

 例えば……

  • 想定したデータがない
  • データ量が足りない
  • データが汚すぎてそのまま使えない

 ……など、データにまつわる色々なトラブルが待ち構えています。その克服に時間とコストがかかりそうであれば、場合によっては「テーマ設定フェーズ」に戻りテーマ選定からやり直す必要もでてきます。

(3) テスト運用フェーズ

 「テスト運用フェーズ」は、モデル構築フェーズで準備したモデルなどを使い、思い描いたような成果を上げられそうかどうかを、一部署などでテスト的に実施し検討するフェーズです。想定した業務プロセスが上手く流れなかったり、無理(過重労働で対応)をしなければ回らなかったり、運用上の問題が色々出てきます。

 例えば……

  • データの集め方
  • 加工の仕方
  • 分析の仕方
  • モデル構築の仕方
  • 分析結果や予測結果を出すタイミング
  • 現場への結果の渡し方や受け取り方
  • 分析結果や予測結果の見せ方(媒体やグラフ表現含む)
  • 分析結果や予測結果の見方(何のために何をどうみるのか)
  • 現場での活用の仕方

 ……など、色々な改善すべき課題が出てきます。

 さらに、テストとはいえ、実務活用するため何かしらの成果を手にします。その成果が想定したよりも少なかったり、逆に多かったりします。もし、モデル構築でどうにかなりそうであれば「モデル構築フェーズ」に戻りますし、テーマそのものを変えた方が良さそうだとなれば「テーマ設定フェーズ」に戻ります。このフェーズで、本格的なデータ分析・活用の運用を実施すべきかどうかの判断をします。

(4) フェーズの結論を固める

 この3つの各フェーズで回...

データ分析

 

 データを使い、実務的な課題をどのように解決していくのか、というデータ活用上の問題があります。幾つか方法がありますが、最も取り組みやすい問題解決フレームワークに、PPDACサイクルというものがあります。

 マネジメントサイクルでは有名なPDCA(Plan-Do-Check-Act)サイクルというものがありますが、PPDACサイクルはちょっと異なります。大きく異なるのは、PPDACサイクルがデータを使うことを前提にしていることです。厳密には、データというよりも情報といったほうがいいかもしれません。今回は「問題解決フレームワークPPDACとは」についてお話しします。

 

1、PPDACサイクル

 PPDACサイクルは、1990年代に作られたデータ分析による課題解決マネジメントサイクルです。以下の5つのステップで構成されています。

  •  P(Problem)   :課題の設定
  •  P(Plan)       :調査・分析の計画
  •  D(Data)      :情報収集(データを集めたり、ヒアリングしたりする)
  •  A(Analysis)  :情報の整理・集計・分析・数理モデル構築など
  •  C(Conclusion):とりあえずの結論

 PPDACは、P(Problem、課題設定)からスタートし → P(Plan、計画) → D(Data、データ収集) → A(Analysis、データ集計・分析・数理モデル構築など) → C(Conclusion、とりあえずの結論)の順番に進みます。

 Cまで進んだら、必要があれば再度Pに戻り、新たなPPDACがスタートします。要するに、PPDACを何度も回していくことになります。

 

(1) 実用的で誰にでも使える

 このサイクルの優れているところは、実用的で誰でも使えることです。小中学生がデータを活用した問題解決力を身につける教育でも使われています。しかも、私自身実際に使ってみて分かったことは、ビジネスの実務でも非常に有効であることです。

(2) 基本は何度も回す

 このPPDACサイクルは、時間をかけて高品質なサイクルを1回するのではなく、短時間にそこそこのサイクルを何回も回します。例えば、データ分析で何かしらの提言をするまでの期間が1週間であれば、5サイクル(1日1回ペース)回します。期間が1日であれば2サイクル(3時間に1回ペース)です。このようにサイクルを何回も回しながら、対応策の質を高めていきます。PPDACサイクルを1回転するたびに「とりあえずの結論(Conclusion)」を出していきます。

 

2、 3つのPPDACサイクル

 データ分析・活用を実現するには、次の3つのフェーズを順に実施する必要があります。

  • (1) テーマ設定フェーズ
  • (2) モデル構築フェーズ
  • (3) テスト運用フェーズ

 

(1) テーマ設定フェーズ

 「テーマ設定フェーズ」は、データ分析・活用のテーマを設定するフェーズです。理想は 「筋の良いテーマ」を探し、テーマとして設定することです。設定するテーマを間違うと、どんなに努力しても、なかなか成果を出すことが難しくなります。そのため、非常に重要になってきます。ちなみに、筋の良いテーマとは、効果が大きくやり易いテーマです。

(2) モデル構築フェーズ

 「モデル構築フェーズ」は、実際にデータなどを集め、データ分析で解決するテーマにとって必要なモデルなどを構築し、実務活用の準備をするフェーズです。実際にデータなどを集めるところから始めるため、テーマ設定フェーズで描いた絵が、実は実現できないということが、分かることもあります。

 例えば……

  • 想定したデータがない
  • データ量が足りない
  • データが汚すぎてそのまま使えない

 ……など、データにまつわる色々なトラブルが待ち構えています。その克服に時間とコストがかかりそうであれば、場合によっては「テーマ設定フェーズ」に戻りテーマ選定からやり直す必要もでてきます。

(3) テスト運用フェーズ

 「テスト運用フェーズ」は、モデル構築フェーズで準備したモデルなどを使い、思い描いたような成果を上げられそうかどうかを、一部署などでテスト的に実施し検討するフェーズです。想定した業務プロセスが上手く流れなかったり、無理(過重労働で対応)をしなければ回らなかったり、運用上の問題が色々出てきます。

 例えば……

  • データの集め方
  • 加工の仕方
  • 分析の仕方
  • モデル構築の仕方
  • 分析結果や予測結果を出すタイミング
  • 現場への結果の渡し方や受け取り方
  • 分析結果や予測結果の見せ方(媒体やグラフ表現含む)
  • 分析結果や予測結果の見方(何のために何をどうみるのか)
  • 現場での活用の仕方

 ……など、色々な改善すべき課題が出てきます。

 さらに、テストとはいえ、実務活用するため何かしらの成果を手にします。その成果が想定したよりも少なかったり、逆に多かったりします。もし、モデル構築でどうにかなりそうであれば「モデル構築フェーズ」に戻りますし、テーマそのものを変えた方が良さそうだとなれば「テーマ設定フェーズ」に戻ります。このフェーズで、本格的なデータ分析・活用の運用を実施すべきかどうかの判断をします。

(4) フェーズの結論を固める

 この3つの各フェーズで回すPPDACサイクルは、サイクルのテーマもアウトプットも、それぞれ異なります。ちなみに、1つのフェーズで1回だけPPDACサイクルを回すというわけではありません。各フェーズの結論が固まるまで、何度でも回します。さらに、各フェーズを行ったり来たりします。

 気軽に、ガンガンPPDACサイクルを回していきましょう。

 

3、PPDACのまとめ

 今回は「問題解決フレームワークPPDACとは?」というお話しをしました。小中学生がデータを活用した問題解決力を身につける教育でも使われるぐらい、使いやすい課題解決フレームワークです。

 PPDACサイクルは、それだけで十分使えるものです。それなりのデータ分析・活用を実現するには、3つのフェーズを順に実施する必要があります。テーマ設定フェーズ、モデル構築フェーズ、テスト運用フェーズ、それぞれのフェーズで、PPDACサイクルを回していきます。各フェーズの結論が固まるまで、何度でも回します。さらに、各フェーズを行ったり来たりします。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
取り組むテーマを経験・勘・度胸で決定 データ分析講座(その161)

  ◆ KKDををめぐる摩訶不思議な現象  KKD(経験・勘・度胸)を悪の根源とみなし、データ分析・活用で排除すると意気込む風景を何度か...

  ◆ KKDををめぐる摩訶不思議な現象  KKD(経験・勘・度胸)を悪の根源とみなし、データ分析・活用で排除すると意気込む風景を何度か...


最近多いケーススタディ③「お勧め商材のレコメンド」 データ分析講座(その190)

    データを使い販売力を効率的に高めるセールスアナリティクスには、3つの典型的なテーマがあります。 新規顧客の獲得 既...

    データを使い販売力を効率的に高めるセールスアナリティクスには、3つの典型的なテーマがあります。 新規顧客の獲得 既...


ビジネス・インテリジェンスツールとは データ分析講座(その35)

◆ ビッグデータ駆動型を目指し、ビジネス・インテリジェンスツールを導入  「ビッグデータ駆動型を目指し、BIツールを導入したけど成果が出ずイライラす...

◆ ビッグデータ駆動型を目指し、ビジネス・インテリジェンスツールを導入  「ビッグデータ駆動型を目指し、BIツールを導入したけど成果が出ずイライラす...


「情報マネジメント一般」の活用事例

もっと見る
‐情報収集で配慮すべき事項(第2回)‐  製品・技術開発力強化策の事例(その10)

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

 前回の事例その9に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...


ソーシャルメディアデータの解析事例:異分野研究から得られる共通した目的とは

 2020年、コロナウィルス感染の問題が大きくなり始めた頃、少人数の開催ということで、ソーシャルメディアデータ解析を専門にされている先生の講演会を聞く...

 2020年、コロナウィルス感染の問題が大きくなり始めた頃、少人数の開催ということで、ソーシャルメディアデータ解析を専門にされている先生の講演会を聞く...


中小製造業とIoTの波

 「IoT(アイオーティー)」の波が、中小製造業にどのような影響をおよぼすのか、具体的にどのような変化がこの業界に訪れるのかについて、解説します。   ...

 「IoT(アイオーティー)」の波が、中小製造業にどのような影響をおよぼすのか、具体的にどのような変化がこの業界に訪れるのかについて、解説します。   ...