データ分析上必須な2つのロジカルシンキング データ分析講座(その198)

更新日

投稿日

 

 

ビジネス必須のスキルとしてロジカルシンキングというものがあります。系統図法という名称で呼ばれていたもので、昔から日本の製造業で使われていたQC7つ道具の1つです。ロジカルシンキングでは、系統図と呼ばれるロジックツリーを作ることが多いです。ロジックツリーの使い方や種類も色々です。特に、データ分析のテーマを考えるときは必須です。

今回は、「データ分析上必要な2つのロジカルシンキング」というお話しをします。

【目次】

1.系統図法とは?
2.系統図法で問題を課題化し解決策を考える流れ
【1】お困りごと(問題)の設定
【2】問題の要因(原因)の洗い出し
【3】原因(要因)の課題化
【4】課題の解決策の案出
【5】解決策のデータ活用の可能性検討

 

1.系統図法とは?

系統図法は、ロジックツリーとも呼ばれる定性分析手法の1つです。データ分析のテーマを考えるときは必須です。色々な系統図法があります。

 

データ分析のテーマを考えるときに、よく使われるのは次の2つです。

  • 問題の要因(原因)を掘り下げる系統図法(なぜなぜ分析)
  • 解決策を具体化する系統図法(どうする分析)

 

2.系統図法で問題を課題化し解決策を考える流れ

以下が、系統図法で問題を課題化し解決策を考える流れです。

【1】お困りごと(問題)の設定
【2】問題の要因(原因)の洗い出し
【3】原因(要因)の課題化
【4】課題の解決策の案出
【5】解決策のデータ活用の可能性検討

 

【1】お困りごと(問題)の設定

テーマ設定の入口は、現場の「お困りごと」(問題)です。ここでは、「理想(To-Be)と現状(As-Is)のギャップが生まれている状態」を「問題」と定義します。これをさらに「数値」でも表現しましょう。

 

データ分析

 

このような「ギャップ分析」を実施します。

 

【2】問題の要因(原因)の洗い出し

問題の要因(原因)の洗い出しで、「問題の要因(原因)を掘り下げる系統図法」(なぜなぜ分析)を使います。

 

データ分析

 

【3】原因(要因)の課題化

「問題の要因を掘り下げる系統図法」(なぜなぜ分析)で洗い出された原因(要因)に対し、「ギャップ分析」を実施し「課題」を考えていきます。「現状(As-Is)」が洗い出された原因(要因)で、「理想(To-Be)」が目指す姿です。

これが「課題」で、原因を課題と見なすことを「課題化」と言います。

 

データ分析

 

少なくとも、「現状(As-Is)」が課題なのではなく、「理想(To-Be)と現状(As-Is)のギャップが埋めること」が「課題」なんです。

 

【4】課題の解決策の案出

課題の解決策を案出するために、「解決策を具体化する系統図...

 

 

ビジネス必須のスキルとしてロジカルシンキングというものがあります。系統図法という名称で呼ばれていたもので、昔から日本の製造業で使われていたQC7つ道具の1つです。ロジカルシンキングでは、系統図と呼ばれるロジックツリーを作ることが多いです。ロジックツリーの使い方や種類も色々です。特に、データ分析のテーマを考えるときは必須です。

今回は、「データ分析上必要な2つのロジカルシンキング」というお話しをします。

【目次】

1.系統図法とは?
2.系統図法で問題を課題化し解決策を考える流れ
【1】お困りごと(問題)の設定
【2】問題の要因(原因)の洗い出し
【3】原因(要因)の課題化
【4】課題の解決策の案出
【5】解決策のデータ活用の可能性検討

 

1.系統図法とは?

系統図法は、ロジックツリーとも呼ばれる定性分析手法の1つです。データ分析のテーマを考えるときは必須です。色々な系統図法があります。

 

データ分析のテーマを考えるときに、よく使われるのは次の2つです。

  • 問題の要因(原因)を掘り下げる系統図法(なぜなぜ分析)
  • 解決策を具体化する系統図法(どうする分析)

 

2.系統図法で問題を課題化し解決策を考える流れ

以下が、系統図法で問題を課題化し解決策を考える流れです。

【1】お困りごと(問題)の設定
【2】問題の要因(原因)の洗い出し
【3】原因(要因)の課題化
【4】課題の解決策の案出
【5】解決策のデータ活用の可能性検討

 

【1】お困りごと(問題)の設定

テーマ設定の入口は、現場の「お困りごと」(問題)です。ここでは、「理想(To-Be)と現状(As-Is)のギャップが生まれている状態」を「問題」と定義します。これをさらに「数値」でも表現しましょう。

 

データ分析

 

このような「ギャップ分析」を実施します。

 

【2】問題の要因(原因)の洗い出し

問題の要因(原因)の洗い出しで、「問題の要因(原因)を掘り下げる系統図法」(なぜなぜ分析)を使います。

 

データ分析

 

【3】原因(要因)の課題化

「問題の要因を掘り下げる系統図法」(なぜなぜ分析)で洗い出された原因(要因)に対し、「ギャップ分析」を実施し「課題」を考えていきます。「現状(As-Is)」が洗い出された原因(要因)で、「理想(To-Be)」が目指す姿です。

これが「課題」で、原因を課題と見なすことを「課題化」と言います。

 

データ分析

 

少なくとも、「現状(As-Is)」が課題なのではなく、「理想(To-Be)と現状(As-Is)のギャップが埋めること」が「課題」なんです。

 

【4】課題の解決策の案出

課題の解決策を案出するために、「解決策を具体化する系統図法」(どうする分析)を使います。

 

データ分析

 

具体的なアクションが見えるまで、掘り下げます。

 

【5】解決策のデータ活用の可能性検討

データは「解決策」の中で活用します。

 

データ

 

つまり、お困りごと(問題)やその原因(要因)、課題が明確になっても、データを活用したほうがいいかどうかは分かりません。データで出来ることは、より良い解決策の実現だけです。

 

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
分析者がビジネスへの意識を高めるには データ分析講座(その84)

◆ データ分析の価値は、分析結果を活用する現場のビジネス成果で決まる  データ分析やその結果は何かに活用されて初めて価値が生まれます。活用されなけれ...

◆ データ分析の価値は、分析結果を活用する現場のビジネス成果で決まる  データ分析やその結果は何かに活用されて初めて価値が生まれます。活用されなけれ...


予測モデルの活用とは データ分析講座(その116)

◆ 予測モデルは帰納的に構築し演繹的に活用する。そして論理展開する。  データ分析・活用を推し進める時にある段階まで進むと、予測モデルが一つのトピッ...

◆ 予測モデルは帰納的に構築し演繹的に活用する。そして論理展開する。  データ分析・活用を推し進める時にある段階まで進むと、予測モデルが一つのトピッ...


ビジネスに貢献し周囲に認められ感謝されるデータ分析 データ分析講座(その74)

◆ 精度が0.1%改善!だからどうしたと、周囲から不思議がられる分析結果  誰かを馬鹿にしたり、自虐的になっているわけでもありません。データ分析系の...

◆ 精度が0.1%改善!だからどうしたと、周囲から不思議がられる分析結果  誰かを馬鹿にしたり、自虐的になっているわけでもありません。データ分析系の...


「情報マネジメント一般」の活用事例

もっと見る
人的資源マネジメント:製品開発の滞留を引き起こすファイルとは(その2)

 今回は、PDM/PLMに代表される製品開発業務のIT化をどのように考え、進めるのがよいのかについて解説します。    前回まで続けていたテ...

 今回は、PDM/PLMに代表される製品開発業務のIT化をどのように考え、進めるのがよいのかについて解説します。    前回まで続けていたテ...


電子メール、簡潔過ぎると逆効果

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...

◆電子メール:多忙な人に確実な返信をもらうテクニック  皆様は仕事で電子メールを一日に何通受信しますか、企業の従業員数、所属部署、職務、職位などでも...


‐技術開発の目標について 第2回‐  製品・技術開発力強化策の事例(その16)

 技術開発の目標を解説する以下の項目4点について、前回は、1と2を解説しましたので、今回は、第2回として、3と4を記述します。          1....

 技術開発の目標を解説する以下の項目4点について、前回は、1と2を解説しましたので、今回は、第2回として、3と4を記述します。          1....