アクションを考えるとは データ分析講座(その143)

更新日

投稿日

データ分析

◆ データ分析:「何をすればよいのか(アクション)」を考える

 前回はデータを使い課題解決を考えた際、「どうなりそうか」という未来について考えるお話をしましたが次は、その未来の中で「何をすればよいのか(アクション)」を考える必要があります。今回は「そして、『何をすればよいのか(アクション)』を考える」についてお話しをします。



1、データ分析で導き出す5つのこと

  • 事実:データから直接分かることは何か?
  • 解釈:データの裏側で何が起こっているのか?
  • 延長:そのまま何も対策を打たないとどうなるのか?
  • 対策:どのような対策を打つべきか?
  • 解決:対策を打つとどうなるのか?

 「事実」と「解釈」は、過去から現在までのことです。「延長」と「対策」、「解決」は現在から未来のことです。

(1) 2つのデータ分析

 「何をすればよいのか(アクション)」を考えていくために、次の2つのことをデータ分析から導き出していきます。

  • 対策:どのような対策を打つべきか?
  • 解決:対策を打つとどうなるのか?

 そのために、次のデータ分析を実施していくことになります。

  • 将来予測
  • レコメンド

(2)将来予測

 「どうなりそうか(未来)」では「将来予測」に関するデータ分析をし、いくつかの「対策案」とその「効果の大きさ」(「延長」と「解決」のギャップ)を考えます。

 例えば……

  • そのまま何も対策を打たないと売り上げがどうなるのか?
  • 対策を打つと売り上げがどうなるのか?

 ……という感じの将来予測を実施します。

 「何をすればよいのか(アクション)」では、いくつかの「対策案」を多様な評価軸で絞りこむための「将来予測」に関するデータ分析を実施します。「効果の大きさ」に関する評価軸だけでなく、

 例えば……

  • 費用対効果
  • 実現可能性

 ……などの評価軸も考慮し、具体的に実施するアクションを検討し決めます。

2、データ分析:どうせならレコメンドを…

 単に未来を予測し評価するよりも「〇〇すべき」や「〇〇したほうが良い」などのアクションをレコメンドできたほうがいいでしょう。データ分析の結果を積み上げながら議論し、すべきことを取りまとめ提言する「人的レコメンド」もいいです。レコメンドのための数理モデル(レコメンドエンジン)を構築しレコメンドする「機械的レコメンド」も良いでしょう。

(1) レコメンドのためのデータ分析

 レコメンドのためのデータ分析といっても、いくつかやり方があります。例えば、次の3つです。

  • シミュレーションによる試行錯誤
  • 数理最適化モデル
  • レコメンドモデル

(2) シミュレーションによる試行錯誤

 「シミュレーションによる試行錯誤」とは、構築した予測モデルを使い、シミュレーションを実施することで、最適なアクションを探ろうというアプローチです。「X(説明変数)を変化させたときにY(説明変数)がどうなるのか?」をシミュレーションしながら、実施すべき施策を検討します。

(3) 数理最適化モデル

 「数理最適化モデル」とは、数理計画法というアルゴリズムを使って、最適解を数理的に求めるアプローチです。「シミュレーションによる試行錯誤」のような試行錯誤をせずに求めるのが特徴です。

 例えば……

  • マーケティングの広告・販促であればmROI(Marketing Return On Investment)を最大化する広告・販促費の最適配分(説明変数X、Xはコスト配分)を求める
  • 開発・生産系であれば一定基準以上の品質特性(通常、目的変数Yは1変量ではなく多変量)を実現するための最適な設計条件(説明変数X)を求める

 ……であるとか、目的変数Yを最大化もしくは最小化するための説明変数Xを算出します。

 数理計画法(線形計画法・非線形計画法・混合整数計画法など)のモデリング技術(事象の数式化)はそれなりのスキルが必要なため、ツールがあればできるというものではありませんが、非常に強力な手段の一つです。

(4) レコメンドモデル

 「レコメンドモデル」とは、協調フィルタリングなどレコメンド用の数理モデルを使い、実施すべきアクションを求めるアプローチです。簡単な協調フィルタリングであれば、EXCELだけでも実現可能です。協調フィルタリングのようなレコメンド用の数理モデルを使うのではなく、単回帰モデルや重回帰モデルなどの簡単な数理モデルを活用することで、レコメンドを実施することも可能です。

(5) 人はレコメンド通りには動かない

 最後に一つ、忘れていけないことがあります。それは、多くの人はレコメンド通りには動かないということです。例えば、Amazonがレコメンドした書籍を、毎回そのまま購入する人は少ないと思います。参考にするかもしれませんが、最後は人が意思決定し購入していることでしょう。

 先ほど例で挙げた、広告費の最適配分の例の場合、数理最適化モデルを活用することで、ズバッと最適なコストの構成比が出てきます。私の経験上、数理的に算出した最適配分の通りに、広告予算を組むことはまずありません。このレコメンドされた最適予算配分をもとに、人が最後調整して決めます。要は、レコメンドされたことを参考に、最後は微調整し意...

データ分析

◆ データ分析:「何をすればよいのか(アクション)」を考える

 前回はデータを使い課題解決を考えた際、「どうなりそうか」という未来について考えるお話をしましたが次は、その未来の中で「何をすればよいのか(アクション)」を考える必要があります。今回は「そして、『何をすればよいのか(アクション)』を考える」についてお話しをします。



1、データ分析で導き出す5つのこと

  • 事実:データから直接分かることは何か?
  • 解釈:データの裏側で何が起こっているのか?
  • 延長:そのまま何も対策を打たないとどうなるのか?
  • 対策:どのような対策を打つべきか?
  • 解決:対策を打つとどうなるのか?

 「事実」と「解釈」は、過去から現在までのことです。「延長」と「対策」、「解決」は現在から未来のことです。

(1) 2つのデータ分析

 「何をすればよいのか(アクション)」を考えていくために、次の2つのことをデータ分析から導き出していきます。

  • 対策:どのような対策を打つべきか?
  • 解決:対策を打つとどうなるのか?

 そのために、次のデータ分析を実施していくことになります。

  • 将来予測
  • レコメンド

(2)将来予測

 「どうなりそうか(未来)」では「将来予測」に関するデータ分析をし、いくつかの「対策案」とその「効果の大きさ」(「延長」と「解決」のギャップ)を考えます。

 例えば……

  • そのまま何も対策を打たないと売り上げがどうなるのか?
  • 対策を打つと売り上げがどうなるのか?

 ……という感じの将来予測を実施します。

 「何をすればよいのか(アクション)」では、いくつかの「対策案」を多様な評価軸で絞りこむための「将来予測」に関するデータ分析を実施します。「効果の大きさ」に関する評価軸だけでなく、

 例えば……

  • 費用対効果
  • 実現可能性

 ……などの評価軸も考慮し、具体的に実施するアクションを検討し決めます。

2、データ分析:どうせならレコメンドを…

 単に未来を予測し評価するよりも「〇〇すべき」や「〇〇したほうが良い」などのアクションをレコメンドできたほうがいいでしょう。データ分析の結果を積み上げながら議論し、すべきことを取りまとめ提言する「人的レコメンド」もいいです。レコメンドのための数理モデル(レコメンドエンジン)を構築しレコメンドする「機械的レコメンド」も良いでしょう。

(1) レコメンドのためのデータ分析

 レコメンドのためのデータ分析といっても、いくつかやり方があります。例えば、次の3つです。

  • シミュレーションによる試行錯誤
  • 数理最適化モデル
  • レコメンドモデル

(2) シミュレーションによる試行錯誤

 「シミュレーションによる試行錯誤」とは、構築した予測モデルを使い、シミュレーションを実施することで、最適なアクションを探ろうというアプローチです。「X(説明変数)を変化させたときにY(説明変数)がどうなるのか?」をシミュレーションしながら、実施すべき施策を検討します。

(3) 数理最適化モデル

 「数理最適化モデル」とは、数理計画法というアルゴリズムを使って、最適解を数理的に求めるアプローチです。「シミュレーションによる試行錯誤」のような試行錯誤をせずに求めるのが特徴です。

 例えば……

  • マーケティングの広告・販促であればmROI(Marketing Return On Investment)を最大化する広告・販促費の最適配分(説明変数X、Xはコスト配分)を求める
  • 開発・生産系であれば一定基準以上の品質特性(通常、目的変数Yは1変量ではなく多変量)を実現するための最適な設計条件(説明変数X)を求める

 ……であるとか、目的変数Yを最大化もしくは最小化するための説明変数Xを算出します。

 数理計画法(線形計画法・非線形計画法・混合整数計画法など)のモデリング技術(事象の数式化)はそれなりのスキルが必要なため、ツールがあればできるというものではありませんが、非常に強力な手段の一つです。

(4) レコメンドモデル

 「レコメンドモデル」とは、協調フィルタリングなどレコメンド用の数理モデルを使い、実施すべきアクションを求めるアプローチです。簡単な協調フィルタリングであれば、EXCELだけでも実現可能です。協調フィルタリングのようなレコメンド用の数理モデルを使うのではなく、単回帰モデルや重回帰モデルなどの簡単な数理モデルを活用することで、レコメンドを実施することも可能です。

(5) 人はレコメンド通りには動かない

 最後に一つ、忘れていけないことがあります。それは、多くの人はレコメンド通りには動かないということです。例えば、Amazonがレコメンドした書籍を、毎回そのまま購入する人は少ないと思います。参考にするかもしれませんが、最後は人が意思決定し購入していることでしょう。

 先ほど例で挙げた、広告費の最適配分の例の場合、数理最適化モデルを活用することで、ズバッと最適なコストの構成比が出てきます。私の経験上、数理的に算出した最適配分の通りに、広告予算を組むことはまずありません。このレコメンドされた最適予算配分をもとに、人が最後調整して決めます。要は、レコメンドされたことを参考に、最後は微調整し意思決定することが多いと思います。もしかしたら、最終的な意思決定をAI(人工知能)が実施する時代が来るかもしれません。

3、データ分析:今回のまとめ

 今回は「そして、『何をすればよいのか(アクション)』を考える」というお話しをしました。「何をすればよいのか(アクション)」では、次の2つのことをデータを分析し導き出す。

  • 対策:どのような対策を打つべきか?
  • 解決:対策を打つとどうなるのか?

 「どうなりそうか(未来)」とほぼ同じではないかと思われがちですが、ちょっと異なります。「何をすればよいのか(アクション)」では「どうなりそうか(未来)」で出された、いくつかの「対策案」とその「効果の大きさ」(「延長」と「解決」のギャップ)をもとに、実施する対策案を検討し決定するためのデータ分析を実施します。そのために、次のデータ分析を実施していくことになります。

  • 将来予測
  • レコメンド

 単に未来を予測し評価するよりも、「〇〇すべき」や「〇〇したほうが良い」などのアクションをレコメンドできたほうがいいでしょう。

 

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
営業を確率で考える データ分析講座(その5)

  ◆ 営業は失注しても、確率で考えれば落ち込めない  「2人の極端な部下がいるけど、どちらも営業成績よくなくて…&hel...

  ◆ 営業は失注しても、確率で考えれば落ち込めない  「2人の極端な部下がいるけど、どちらも営業成績よくなくて…&hel...


売上データの回帰分析 データ分析講座(その44)

◆ 売上分析の方法や手法は、3つの「売上データの種類」で変化する  企業収益に直結するデータ分析と言えば、それは売上分析です。しかし、売上と言っても...

◆ 売上分析の方法や手法は、3つの「売上データの種類」で変化する  企業収益に直結するデータ分析と言えば、それは売上分析です。しかし、売上と言っても...


データから未来とアクションを検討する データ分析講座(その139)

◆ データ分析:所詮データは、過去の一部分でしかない  データ活用全般にいえることですが、データは「過去」の「ある事象」(例:受注や生産、購買など)...

◆ データ分析:所詮データは、過去の一部分でしかない  データ活用全般にいえることですが、データは「過去」の「ある事象」(例:受注や生産、購買など)...


「情報マネジメント一般」の活用事例

もっと見る
‐販路開拓に関する問題 第1回‐  製品・技術開発力強化策の事例(その17)

 前回の事例その16に続いて解説します。開発が完了したから販売先を探す。そのような考え方で開発に従事することは根本的に間違っている事は既に述べました。開発...

 前回の事例その16に続いて解説します。開発が完了したから販売先を探す。そのような考え方で開発に従事することは根本的に間違っている事は既に述べました。開発...


情報システム導入企業の悩みとは

        今回は、次の事例から、自社の生産システムにあった生産管理ソフトの選択をどうすべきかを解説します。   1. 想定事例  電...

        今回は、次の事例から、自社の生産システムにあった生産管理ソフトの選択をどうすべきかを解説します。   1. 想定事例  電...


守秘義務は情報社会の命綱

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

  1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...