データ分析・活用の属人化とは データ分析講座(その92)

更新日

投稿日

データ分析

データ分析・活用ナレッジの蓄積・共有・継承

 データ分析・活用にチャレンジし右往左往している企業を傍目に、上手くいくようになった企業の事例です。その企業は、ある特定の領域に限っただけでも、データ分析人財が300人を超えていました。外から見ると、順風満帆で何も問題のないようにさえ思えました。しかし、データ分析・活用が属人化してしまい、そのことを危惧していたのです。

 今回は、「データ活用が上手くいったけど、次に大きな壁があった!データ分析・活用ナレッジの蓄積・共有・継承」というお話しをします。

1. 属人化しやすいデータ分析

 ナレッジマネジメントという言葉がある通り、ビジネス上の業務ナレッジを蓄積・共有し活用すること自体、大きな課題なのかもしれません。データ分析も他の業務と同様、大きな課題になります。私は約20年間、データ分析に関わってきましたが、分析そのものは属人化しやすい傾向になると思います。

 分析者は、どちらかというと職人的な感じの要素を持ち合わせているように私には見えます。口頭で伝えるのが難しい、ちょっとした何かがあるのです。私の経験ですが非常に非論理的で感覚的な何かが、データ分析そのものの出来を決めることが、少なくありません。

2. データ分析: 使っているツールからしてバラバラ

 データ分析者の多くは、自分の好みの分析ツールを使っているようです。フリーツールであれば現在、RとPythonが有名ですが、どちらを使うかは完全に好みの違いです。有料ツールであれば、SPSSやSAS、MATLABなどが有名ですが、どれを使うのかも使う人の好みです。有料ツールの場合、組織が一括購入することが多いので、その組織長か影響力の強い人の好みでツールが決定されているように思えます。

 実際、データ分析を実施している人や組織を調べれば、バラバラであることが分かります。私のいたある組織では実際に開発部署はSAS、また別の事業部ではSPSS、中央研究所はMATLABを購入していました。

 個人単位で話しを聞いてみると、エンジニア系の人はPythonを使い、統計解析系の人はRを使っていました。有料ツールが本当に必要なのかと思いましたが、それはそれとして、少なくとも人や組織が異なればツールからしてバラバラでした。

3. データ分析: ツールを揃えようとしたら、大反発

 分析ツールぐらい統一しようという話しになり、プロジェクトが発足したのですが、結局上手くいきませんでした。予想以上に、今まで使っていたツールへの愛着というかこだわりが強く、プロジェクトの開始とともに大反発が起こり、そのうちプロジェクトの存在が無視されるようになった上、統一してた分析ツールが決定したにも関わらず、全く広まりませんでした。

 過去の継続性という観点から、今まで使っていた有料ツールもある程度の期間継続契約を結ぶことなっていたことも、ネックになっていました。

4. データ分析: 共有化すべきは、ツールではなくナレッジだ

 よくよく考えてみれば、ツールを統一したからといって、データ分析・活用ナレッジの蓄積・共有・継承が上手くいくとは限りません。でも、ツールを統一したほうが進みやすいとは思いますが、本来のデータ分析・活用ナレッジに焦点を当てるようにしました。データ分析・活用ナレッジは、ある種のメタデータです。メタデータといえども他のデータ同様、データを蓄積すればいいのです。しかし多くの場合、定量的なデータだけで完結することなく、定性的なデータをいかに蓄積するのかが重要になってきました。

5. データ分析: 2つのメタデータ

 すぐできるものとして2つの取り組みをしました。

  • ① データ分析プロジェクトの軌跡の見える化
  • ② 失敗事例の蓄積と共有

 詳細は次回以降でお話ししますが、どちらもすぐにできることです。

 ①の「データ分析プロジェクトの軌跡の見える化」は、私が20代のころに1人で実施していたことを、元にしています。私は新卒時、データ分析を専門にする組織に配属されました。歴史と伝統のある組織であったため、多くの分析プロジェクトの足跡が残っていたのです。組織の中で最も経験もスキルもない私がやったのが、過去のデータ分析プロジェクトを再現するということです。その副産物として、このプロジェクトの軌跡が見える化されました。

 このことは、ナレッジの共有・継承(教育)と蓄積に大いに役立ちます。

 ②の「失敗事例の蓄積と共有」は文字通り、データ分析プロジェクト中に発生したちょっとした失敗談を溜めていくということです。②のほうが①に比べ簡単にできますが、組織によっては全く進みません。失敗を許容できる風土でないと、やや困難が伴いますが、上手くいくと非常にいい試みです。

6. ツールを統一したほうが、データ分析・活用ナレッジの蓄積・共有・継承が進みやすい

 今回は「データ活用が上手くいったけど、次に大きな壁があった! ...

データ分析

データ分析・活用ナレッジの蓄積・共有・継承

 データ分析・活用にチャレンジし右往左往している企業を傍目に、上手くいくようになった企業の事例です。その企業は、ある特定の領域に限っただけでも、データ分析人財が300人を超えていました。外から見ると、順風満帆で何も問題のないようにさえ思えました。しかし、データ分析・活用が属人化してしまい、そのことを危惧していたのです。

 今回は、「データ活用が上手くいったけど、次に大きな壁があった!データ分析・活用ナレッジの蓄積・共有・継承」というお話しをします。

1. 属人化しやすいデータ分析

 ナレッジマネジメントという言葉がある通り、ビジネス上の業務ナレッジを蓄積・共有し活用すること自体、大きな課題なのかもしれません。データ分析も他の業務と同様、大きな課題になります。私は約20年間、データ分析に関わってきましたが、分析そのものは属人化しやすい傾向になると思います。

 分析者は、どちらかというと職人的な感じの要素を持ち合わせているように私には見えます。口頭で伝えるのが難しい、ちょっとした何かがあるのです。私の経験ですが非常に非論理的で感覚的な何かが、データ分析そのものの出来を決めることが、少なくありません。

2. データ分析: 使っているツールからしてバラバラ

 データ分析者の多くは、自分の好みの分析ツールを使っているようです。フリーツールであれば現在、RとPythonが有名ですが、どちらを使うかは完全に好みの違いです。有料ツールであれば、SPSSやSAS、MATLABなどが有名ですが、どれを使うのかも使う人の好みです。有料ツールの場合、組織が一括購入することが多いので、その組織長か影響力の強い人の好みでツールが決定されているように思えます。

 実際、データ分析を実施している人や組織を調べれば、バラバラであることが分かります。私のいたある組織では実際に開発部署はSAS、また別の事業部ではSPSS、中央研究所はMATLABを購入していました。

 個人単位で話しを聞いてみると、エンジニア系の人はPythonを使い、統計解析系の人はRを使っていました。有料ツールが本当に必要なのかと思いましたが、それはそれとして、少なくとも人や組織が異なればツールからしてバラバラでした。

3. データ分析: ツールを揃えようとしたら、大反発

 分析ツールぐらい統一しようという話しになり、プロジェクトが発足したのですが、結局上手くいきませんでした。予想以上に、今まで使っていたツールへの愛着というかこだわりが強く、プロジェクトの開始とともに大反発が起こり、そのうちプロジェクトの存在が無視されるようになった上、統一してた分析ツールが決定したにも関わらず、全く広まりませんでした。

 過去の継続性という観点から、今まで使っていた有料ツールもある程度の期間継続契約を結ぶことなっていたことも、ネックになっていました。

4. データ分析: 共有化すべきは、ツールではなくナレッジだ

 よくよく考えてみれば、ツールを統一したからといって、データ分析・活用ナレッジの蓄積・共有・継承が上手くいくとは限りません。でも、ツールを統一したほうが進みやすいとは思いますが、本来のデータ分析・活用ナレッジに焦点を当てるようにしました。データ分析・活用ナレッジは、ある種のメタデータです。メタデータといえども他のデータ同様、データを蓄積すればいいのです。しかし多くの場合、定量的なデータだけで完結することなく、定性的なデータをいかに蓄積するのかが重要になってきました。

5. データ分析: 2つのメタデータ

 すぐできるものとして2つの取り組みをしました。

  • ① データ分析プロジェクトの軌跡の見える化
  • ② 失敗事例の蓄積と共有

 詳細は次回以降でお話ししますが、どちらもすぐにできることです。

 ①の「データ分析プロジェクトの軌跡の見える化」は、私が20代のころに1人で実施していたことを、元にしています。私は新卒時、データ分析を専門にする組織に配属されました。歴史と伝統のある組織であったため、多くの分析プロジェクトの足跡が残っていたのです。組織の中で最も経験もスキルもない私がやったのが、過去のデータ分析プロジェクトを再現するということです。その副産物として、このプロジェクトの軌跡が見える化されました。

 このことは、ナレッジの共有・継承(教育)と蓄積に大いに役立ちます。

 ②の「失敗事例の蓄積と共有」は文字通り、データ分析プロジェクト中に発生したちょっとした失敗談を溜めていくということです。②のほうが①に比べ簡単にできますが、組織によっては全く進みません。失敗を許容できる風土でないと、やや困難が伴いますが、上手くいくと非常にいい試みです。

6. ツールを統一したほうが、データ分析・活用ナレッジの蓄積・共有・継承が進みやすい

 今回は「データ活用が上手くいったけど、次に大きな壁があった! データ分析・活用ナレッジの蓄積・共有・継承」というお話しをしました。多くの業務と同じように、データ分析という業務も属人化しやすい印象があります。そういう意味で、何かしらナレッジマネジメントをしないと、データ分析・活用がどんなに上手くいったとしても、その分析者がいなくなったら、どうなってしまうのかと一抹の不安が残ります。職人や芸術家が自分好みの道具で仕事をするように、分析者も自分好みのツールを使うため組織としても統一が難しいと思われます。

 実際、データ分析や実施している人、組織を調べれば三者三様であることが分かります。私のいた組織でも実際そうでした。そもそも論で考えれば「共有化すべきは、ツールではなくナレッジ」です。正直、ツールを統一したほうがデータ分析・活用ナレッジの蓄積・共有・継承が進みやすいとは思いますが、難しいので私はやりやすいところから実施しました。

 詳細はこの連載、次回以降でお話しします。ちなみに②の「失敗事例の蓄積と共有」に関しては、ある企業内の取り組みを書籍(データサイエンティストの秘密ノート 35の失敗事例と克服法)として出版していますので、興味のある方はご覧頂ければと思います。

   続きを読むには・・・


この記事の著者

高橋 威知郎

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


「情報マネジメント一般」の他のキーワード解説記事

もっと見る
販売力を高めるデータ分析の技術 データ分析講座(その185)

  ◆ 販売力を高めるデータ分析の技術 多くの企業にあるデータの1つが、販売系のデータだと思います。売上を計上する上で、必ず必要になるた...

  ◆ 販売力を高めるデータ分析の技術 多くの企業にあるデータの1つが、販売系のデータだと思います。売上を計上する上で、必ず必要になるた...


データ分析・活用の2層構造の理解 データ分析講座(その89)

  ◆ ビッグデータ活用が上手くいかない時、データ分析・活用の2層構造を理解すればスッキリする  ビッグデータが叫ばれてから、データ分析やデ...

  ◆ ビッグデータ活用が上手くいかない時、データ分析・活用の2層構造を理解すればスッキリする  ビッグデータが叫ばれてから、データ分析やデ...


データ分析組織は、やっていることを金額換算 データ分析講座(その71)

◆ データ活用の火を消さないために、データ分析組織に求められること  データ分析組織(データサイエンス専門の組織)を作ったのに、データ分析が根付かな...

◆ データ活用の火を消さないために、データ分析組織に求められること  データ分析組織(データサイエンス専門の組織)を作ったのに、データ分析が根付かな...


「情報マネジメント一般」の活用事例

もっと見る
簡易版DX/IoTから機械学習への移行

  ◆ DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に  産業界のニュースなどをインターネットで読んでいると...

  ◆ DX(デジタル・トランスフォーメーション)を使えばコスト削減と納期短縮が可能に  産業界のニュースなどをインターネットで読んでいると...


たかがWord、されどWord

 マイクロソフトOfficeはどこでも使われているので、ITリテラシーとしてWordを使えることが求められます。『 Wordが使える 』と言っても、そのレ...

 マイクロソフトOfficeはどこでも使われているので、ITリテラシーとしてWordを使えることが求められます。『 Wordが使える 』と言っても、そのレ...


情報システム導入企業の悩みとは

        今回は、次の事例から、自社の生産システムにあった生産管理ソフトの選択をどうすべきかを解説します。   1. 想定事例  電...

        今回は、次の事例から、自社の生産システムにあった生産管理ソフトの選択をどうすべきかを解説します。   1. 想定事例  電...