改善メカニズムの解明 品質工学による技術開発(その20)

投稿日

品質工学

 

1. PDSAサイクルのSに位置付けられる改善メカニズムの解明

本解説シリーズの(その15)独自技術事業化を目指した技術開発からLIMDOW-MOの事例を取り上げて,品質工学による技術開発の進め方を紹介しています.本解説シリーズの(その19)ロバストパラメータ設計の目的では技術開発プロセスの骨格であるPDSA(Plan Do Study Action)サイクル(本解説シリーズの(その17)技術開発のPDSAサイクル参照)のPとDについて解説しました.今回はPDSAサイクルのSに位置付けられる改善メカニズムの解明について実際の事例を使って解説します.

◆【特集】 連載記事紹介:連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆ 関連解説記事:品質工学による技術開発 【連載記事紹介】

 

2. 改善メカニズムの評価

既存の制御因子だけを取り上げたロバストパラメータ設計の実施によってロバスト性と性能の両立確保できるケースはほとんどないと言ってよいでしょう.この為,新たな制御因子やシステム構造などを発想する必要があります.

 

その発想に方向性を与え,ロバスト性と性能の両立確保の確実性を高めるステップが改善効果のメカニズム解明です.ロバストパラメータ設計の実施によって,ロバスト性と性能を両立する目標を達成できなかったとしても,ロバスト性と性能の改善効果は必ず得ることができます.

 

また,加法性の良い評価特であればロバスト性と性能トレードオフ関係を明らかにすることもできます.そのロバスト性と性能の改善効果のメカニズムを把握し,両者のトレードオフを根本的に解消する技術手段を考案するための技術情報を得ることが改善メカニズムを評価す目的です.図1に,本解説シリーズの(その18)全体最適化のための機能性評価で示した4層方式のLIMDOW-MOを対象に実施したロバストパラメータ設計の解析結果を受けて実施した改善メカニズムの調査結果のイメージを示します.

 

品質工学

図1.4層方式LIMDOW-MOの改善メカニズムの調査結果

 

本解説シリーズの(その19)ロバストパラメータ設計の目的では4層方式のロバストパラメータ設計の計画の概要を解説しました.

 

このロバストパラメータ設計の結果から得たSN比と性能の要因効果図から記録層の組成(DyFeCo)が最も重要な制御因子であり,記録層の組成がロバスト性と性能の大きなトレードオフ関係を生み出していることが明らかになりました[1].このトレードオフ関係を解消す方向性を見出すために図1の改善メカニズムの調査を実施したのです.

 

一般的なトレードオフへの対応方法はバランス点の決定です.具体的には,図1の一番下にある制御因子である記録層の組成αと,一番上の目的特性(記録レーザーパワー,初期化磁界,SN比)の傾向から3つの目的特性のバランス点を見出すことです.

 

これは単なる作業であり,技術開発段階でロバスト性と性能の両立性を十分に確保した後の製品設計段階で実施すべきことです.このようなチューニング作業を技術開発段階で実施することが技術開発の成功確率を下げてしまう要因の一つと言えます.技術開発段階では,本解説シリーズの(その2)で解説したように現象説明因子を取り上げるアナリシスパートと,目的特性を取り上げるマネジメントパートに注目し,両者の因果関係を把握することが重要です.それが図1の磁気特性と目的特性のグラフです.このような現象説明因子と目的特性の因果関係の把握から6層方式,さらには7層方式の発想に至ったのです.

 

3. ロバストパラメータ設計からCS-T法へ

図1の因果関係は,ロバストパラメータ設計の解析結果を得た後の試行錯誤的な実験から得られた結果です.このPDSAのSの活動の質と効率性を両立して,高める技...

品質工学

 

1. PDSAサイクルのSに位置付けられる改善メカニズムの解明

本解説シリーズの(その15)独自技術事業化を目指した技術開発からLIMDOW-MOの事例を取り上げて,品質工学による技術開発の進め方を紹介しています.本解説シリーズの(その19)ロバストパラメータ設計の目的では技術開発プロセスの骨格であるPDSA(Plan Do Study Action)サイクル(本解説シリーズの(その17)技術開発のPDSAサイクル参照)のPとDについて解説しました.今回はPDSAサイクルのSに位置付けられる改善メカニズムの解明について実際の事例を使って解説します.

◆【特集】 連載記事紹介:連載記事のタイトルをまとめて紹介、各タイトルから詳細解説に直リンク!!

◆ 関連解説記事:品質工学による技術開発 【連載記事紹介】

 

2. 改善メカニズムの評価

既存の制御因子だけを取り上げたロバストパラメータ設計の実施によってロバスト性と性能の両立確保できるケースはほとんどないと言ってよいでしょう.この為,新たな制御因子やシステム構造などを発想する必要があります.

 

その発想に方向性を与え,ロバスト性と性能の両立確保の確実性を高めるステップが改善効果のメカニズム解明です.ロバストパラメータ設計の実施によって,ロバスト性と性能を両立する目標を達成できなかったとしても,ロバスト性と性能の改善効果は必ず得ることができます.

 

また,加法性の良い評価特であればロバスト性と性能トレードオフ関係を明らかにすることもできます.そのロバスト性と性能の改善効果のメカニズムを把握し,両者のトレードオフを根本的に解消する技術手段を考案するための技術情報を得ることが改善メカニズムを評価す目的です.図1に,本解説シリーズの(その18)全体最適化のための機能性評価で示した4層方式のLIMDOW-MOを対象に実施したロバストパラメータ設計の解析結果を受けて実施した改善メカニズムの調査結果のイメージを示します.

 

品質工学

図1.4層方式LIMDOW-MOの改善メカニズムの調査結果

 

本解説シリーズの(その19)ロバストパラメータ設計の目的では4層方式のロバストパラメータ設計の計画の概要を解説しました.

 

このロバストパラメータ設計の結果から得たSN比と性能の要因効果図から記録層の組成(DyFeCo)が最も重要な制御因子であり,記録層の組成がロバスト性と性能の大きなトレードオフ関係を生み出していることが明らかになりました[1].このトレードオフ関係を解消す方向性を見出すために図1の改善メカニズムの調査を実施したのです.

 

一般的なトレードオフへの対応方法はバランス点の決定です.具体的には,図1の一番下にある制御因子である記録層の組成αと,一番上の目的特性(記録レーザーパワー,初期化磁界,SN比)の傾向から3つの目的特性のバランス点を見出すことです.

 

これは単なる作業であり,技術開発段階でロバスト性と性能の両立性を十分に確保した後の製品設計段階で実施すべきことです.このようなチューニング作業を技術開発段階で実施することが技術開発の成功確率を下げてしまう要因の一つと言えます.技術開発段階では,本解説シリーズの(その2)で解説したように現象説明因子を取り上げるアナリシスパートと,目的特性を取り上げるマネジメントパートに注目し,両者の因果関係を把握することが重要です.それが図1の磁気特性と目的特性のグラフです.このような現象説明因子と目的特性の因果関係の把握から6層方式,さらには7層方式の発想に至ったのです.

 

3. ロバストパラメータ設計からCS-T法へ

図1の因果関係は,ロバストパラメータ設計の解析結果を得た後の試行錯誤的な実験から得られた結果です.このPDSAのSの活動の質と効率性を両立して,高める技法が本解説シリーズの(その4)で解説したCS-T法です[1].CS-T法によって,技術開発の成功率が高まることが複数の事例で示されています.本連載ではCS-T法についても,再度取り上げる予定です.またベイズ最適化などの機械学習とCS-T法の融合の可能性も示されています[2]

【参考文献】
[1]細川哲夫:「タグチメソッドによる技術開発 ~基本機能を探索できるCS-T法~」,日科技連(2020)
[2]細川哲夫:QE Compass,  https://qecompass.com/, (2023.09.18)
QE Compassコンサルタント 新しい品質工学を提案する細川哲夫のページ ブログ

  

◆関連解説『品質工学(タグチメソッド)とは』

 

 

   続きを読むには・・・


この記事の著者

細川 哲夫

お客様の期待を超える感動品質を備えた製品を継続して提供するために、創造性と効率性を両立した新しい品質工学を一緒に活用しましょう。

お客様の期待を超える感動品質を備えた製品を継続して提供するために、創造性と効率性を両立した新しい品質工学を一緒に活用しましょう。


「品質工学(タグチメソッド)総合」の他のキーワード解説記事

もっと見る
品質工学における機能の重要性 製品機能(その1)

【製品機能 連載目次】 製品機能(その1)品質工学における機能の重要性 製品機能(その2)機能のモデル化 製品機能(その3)Effectsの機能...

【製品機能 連載目次】 製品機能(その1)品質工学における機能の重要性 製品機能(その2)機能のモデル化 製品機能(その3)Effectsの機能...


対数・指数関数の例 品質工学の動特性における安定性評価について(その4)

 品質工学の動特性における安定性評価について【 目 次 】    【その1】     1. 動特性とは    2. 繰り返しデータの事例でのSN比と感...

 品質工学の動特性における安定性評価について【 目 次 】    【その1】     1. 動特性とは    2. 繰り返しデータの事例でのSN比と感...


QCDの同時達成、品質工学の役割とは

 経済成長は入力エネルギーの効率的な活用で、出力エネルギーを高めることが大切です。すなわち、無駄なエネルギーを排除して成果を出すことが必要です。今までは、...

 経済成長は入力エネルギーの効率的な活用で、出力エネルギーを高めることが大切です。すなわち、無駄なエネルギーを排除して成果を出すことが必要です。今までは、...


「品質工学(タグチメソッド)総合」の活用事例

もっと見る
品質問題を未然防止するタグチメソッドの適用事例 

  1.  タグチメソッド ~ 仕組み以前にコンセプトが理解しにくい  以前3回にわたって「考え方」「機能性評価」「直交表」につい...

  1.  タグチメソッド ~ 仕組み以前にコンセプトが理解しにくい  以前3回にわたって「考え方」「機能性評価」「直交表」につい...


科学的手法(TRIZ,QFD,タグチメソッド)の社内展開:オリンパスの事例

 2011年のTRIZシンポジウムでオリンパス株式会社の緒方隆司さんが発表し、参加者投票 「私にとって最もよかった発表」で表彰された、「TRIZを含む科学...

 2011年のTRIZシンポジウムでオリンパス株式会社の緒方隆司さんが発表し、参加者投票 「私にとって最もよかった発表」で表彰された、「TRIZを含む科学...


精密鍛造金型メーカーが自社技術を起点に新商品開発に取り組んだ事例

※イメージ画像 1. 自社技術起点に新商品開発  今回は、精密鍛造金型メーカーとして創業し、現在は研究開発から部品製造まで精密鍛造に関するトータル...

※イメージ画像 1. 自社技術起点に新商品開発  今回は、精密鍛造金型メーカーとして創業し、現在は研究開発から部品製造まで精密鍛造に関するトータル...