基本的ステップ 新QC七つ道具:第4章 親和図法の使い方(その6)

更新日

投稿日

 
 KJ法
 
【目次】
第4章  親和図法の使い方 ←今回 
第5章  マトリックス・データ(MD)解析法の使い方
第6章  マトリックス図法の使い方
第7章  系統図法の使い方
第8章  アロー・ダイヤグラム法の使い方
第9章  PDPC法の使い方
第10章 PDCA-TC法の使い方
 

新QC七つ道具:第4章 親和図法の使い方

 

4.2 混沌解明のための親和図法の基本的ステップ

 

4.2.3 各ステップの詳細説明

 

【Step1: テーマの選定】

 
 親和図法が対象とするテーマは、すでに説明した通り非常に広範ですが、この連載の場合は、“システムのレベルアップによる現状打破”すなわち、「混沌解明の結果を踏まえた、混沌脱出後に目指す望ましい姿の模索」にテーマを限定し、その分、使い方のノウハウを細部に至るまで説明しようとしています。
 
 したがって、テーマ選定に当たっては、“(望ましい姿)になるには”または“(望ましい姿を実現)するためには”、という打開策を問う形になります。
 

【ポイント1】主体性を持ったものにする。

 
 具体例をあげると、N7研で与えられたテーマは、この連載の解説で事例として取り上げますが「これからのQAはどうなるか」でした。しかし、品質保証体系図の改訂という具体的ニーズを抱えていた筆者は、この研修課題を実務に生かそうと考え、データの供出、解析とも「これからのQAはどうあるべきか」として取り組みました。
 
 スタッフワークのポイントは、物事の時流と趨勢の把握の上に立った、“独自性(自分たちの特質を基盤とした個性と独創性)の確立”だと考えるからです。
 

【ポイント 2】あるべき姿を具現するための打開策を問う形のものにする。

 
 親和図法はオリジナルであるKJ法 がそうであるように、非常に広範な活用が期待される手法であり、提唱の書では、それを6つのジャンルに整理して、それぞれ具体的な説明を付して提唱しています。[1](p89-92) ただ、混沌解明と挑戦管理という側面から極論すると“現状把握”と“デザインアプローチ” に整理され、前者は連関図法がよりふさわしく、後者こそが親和図法の対象であり、その機能を十分発揮させ得るデータ採取には“あるべき姿を具現するための打開策を問う形”にするのがよいでしょう。
 

【Step2: メンバーの選定】

 
 ここでいうメンバーとは、言語データ採取のためのBS(ブレーンストーミング)のメンバーのことですが、末端の実情把握を主眼とする連関図法の場合とは違い、メンバーの質が結論を大きく左右するので、慎重を要しますが、ポイントは下記の通りです。
 

【ポイント1】リーダーを含む管理者・スタッフ層。

 
 日ごろの問題解決において、システムデザイン的アプローチを求められている層を選んでいます。理由は、現状分析の起点である“末端における生の声の抽出”を主眼とする連関図法の場合と違い、親和図法の場合は、デザインアプローチ的思考をベースにしたデータ採取が必要だからです。なお、メンバーの発想を引き出す意味において、リーダーの参画は必須であり、可能であればトップの参画が望ましいでしょう。ただ、ステップ3のポイント2で言及しますが、発言に際しては注意が必要です。
 

【ポイント2】一見関係のなさそうな部門もメンバーに入れておく。

 
 これは、たとえば、製造品質がテーマの場合、設計・購買の関係者までが普通ですが、営業・実験の関係者も参画させておくことにより、思いがけない貴重なデータが手に入るとともに、意識のズレやすい部門間の相互理解がなされ、結論の実施段階でのベクトル合わせが容易になることが期待されるからです。
 

【ポイント3】職制にこだわらない。

 
 メンバーを“管理者・スタッフ層”としたのは、デザインアプローチ的発想をベースとした言語データが欲しいからであり、そういった発想の持ち主であれば、...
 
 KJ法
 
【目次】
第4章  親和図法の使い方 ←今回 
第5章  マトリックス・データ(MD)解析法の使い方
第6章  マトリックス図法の使い方
第7章  系統図法の使い方
第8章  アロー・ダイヤグラム法の使い方
第9章  PDPC法の使い方
第10章 PDCA-TC法の使い方
 

新QC七つ道具:第4章 親和図法の使い方

 

4.2 混沌解明のための親和図法の基本的ステップ

 

4.2.3 各ステップの詳細説明

 

【Step1: テーマの選定】

 
 親和図法が対象とするテーマは、すでに説明した通り非常に広範ですが、この連載の場合は、“システムのレベルアップによる現状打破”すなわち、「混沌解明の結果を踏まえた、混沌脱出後に目指す望ましい姿の模索」にテーマを限定し、その分、使い方のノウハウを細部に至るまで説明しようとしています。
 
 したがって、テーマ選定に当たっては、“(望ましい姿)になるには”または“(望ましい姿を実現)するためには”、という打開策を問う形になります。
 

【ポイント1】主体性を持ったものにする。

 
 具体例をあげると、N7研で与えられたテーマは、この連載の解説で事例として取り上げますが「これからのQAはどうなるか」でした。しかし、品質保証体系図の改訂という具体的ニーズを抱えていた筆者は、この研修課題を実務に生かそうと考え、データの供出、解析とも「これからのQAはどうあるべきか」として取り組みました。
 
 スタッフワークのポイントは、物事の時流と趨勢の把握の上に立った、“独自性(自分たちの特質を基盤とした個性と独創性)の確立”だと考えるからです。
 

【ポイント 2】あるべき姿を具現するための打開策を問う形のものにする。

 
 親和図法はオリジナルであるKJ法 がそうであるように、非常に広範な活用が期待される手法であり、提唱の書では、それを6つのジャンルに整理して、それぞれ具体的な説明を付して提唱しています。[1](p89-92) ただ、混沌解明と挑戦管理という側面から極論すると“現状把握”と“デザインアプローチ” に整理され、前者は連関図法がよりふさわしく、後者こそが親和図法の対象であり、その機能を十分発揮させ得るデータ採取には“あるべき姿を具現するための打開策を問う形”にするのがよいでしょう。
 

【Step2: メンバーの選定】

 
 ここでいうメンバーとは、言語データ採取のためのBS(ブレーンストーミング)のメンバーのことですが、末端の実情把握を主眼とする連関図法の場合とは違い、メンバーの質が結論を大きく左右するので、慎重を要しますが、ポイントは下記の通りです。
 

【ポイント1】リーダーを含む管理者・スタッフ層。

 
 日ごろの問題解決において、システムデザイン的アプローチを求められている層を選んでいます。理由は、現状分析の起点である“末端における生の声の抽出”を主眼とする連関図法の場合と違い、親和図法の場合は、デザインアプローチ的思考をベースにしたデータ採取が必要だからです。なお、メンバーの発想を引き出す意味において、リーダーの参画は必須であり、可能であればトップの参画が望ましいでしょう。ただ、ステップ3のポイント2で言及しますが、発言に際しては注意が必要です。
 

【ポイント2】一見関係のなさそうな部門もメンバーに入れておく。

 
 これは、たとえば、製造品質がテーマの場合、設計・購買の関係者までが普通ですが、営業・実験の関係者も参画させておくことにより、思いがけない貴重なデータが手に入るとともに、意識のズレやすい部門間の相互理解がなされ、結論の実施段階でのベクトル合わせが容易になることが期待されるからです。
 

【ポイント3】職制にこだわらない。

 
 メンバーを“管理者・スタッフ層”としたのは、デザインアプローチ的発想をベースとした言語データが欲しいからであり、そういった発想の持ち主であれば、管理者・スタッフという職制にはこだわらないのです。また、社内事情に通じていることが前提ですが、テーマに対して造詣の深い部外者の参画が有効な場合もあります。
 
 次回は、Step 3: 言語データの採取から、解説を続けます。
 
【参考文献】
 
[1]「管理者・スタッフの新QC七つ道具」日科技連出版
 

   続きを読むには・・・


この記事の著者

浅田 潔

100年企業を目指す中小企業のため独自に開発した高効率な理念経営体系を柱に経営者と伴走します。

100年企業を目指す中小企業のため独自に開発した高効率な理念経営体系を柱に経営者と伴走します。


「親和図法(KJ法)」の他のキーワード解説記事

もっと見る
事例 新QC七つ道具:親和図法の使い方(その13)

【目次】 序論   ←掲載済 第1章  混沌解明とN7(新QC七つ道具)←掲載済 第2章  挑戦管理とN...

【目次】 序論   ←掲載済 第1章  混沌解明とN7(新QC七つ道具)←掲載済 第2章  挑戦管理とN...


事例 新QC七つ道具:親和図法の使い方(その16)

  【目次】 序論   ←掲載済 第1章  混沌解明とN7(新QC七つ道具)←掲載済 第2章 ...

  【目次】 序論   ←掲載済 第1章  混沌解明とN7(新QC七つ道具)←掲載済 第2章 ...


KJ法の特徴と進め方

1.KJ法の特徴  KJ法は、収束技法の空間型・帰納法として最も著名なものです。KJ法とは文化人類学者の川喜田二郎氏が現場調査をまとめるためにつくり出し...

1.KJ法の特徴  KJ法は、収束技法の空間型・帰納法として最も著名なものです。KJ法とは文化人類学者の川喜田二郎氏が現場調査をまとめるためにつくり出し...


「親和図法(KJ法)」の活用事例

もっと見る
新興国で求められる現地現物的アプローチ【トヨタ事例の講演を聴講して】

 12月8日武蔵工大MOT主催の講演会で、元トヨタ専務である岡部聰氏の講演「新興国における現地現物的アプローチ」を聴講し、アジア新興国市場での事業を考える...

 12月8日武蔵工大MOT主催の講演会で、元トヨタ専務である岡部聰氏の講演「新興国における現地現物的アプローチ」を聴講し、アジア新興国市場での事業を考える...