TRIZ を使用した DfSS事例 (その2)

 
 前回のその1に続いて解説します。
 

5. D/O(Design and Optimize/設計と最適化)フェーズ

 
 Design and Optimize フェーズでは以下のツールを使いました。
 
  •  Boundary Diagram
  •  Cause & Effect Diagram (Fish Bone Diagram)
  •  Parameter Diagram (P-Diagram)
  •  Design FMEA
  •  Thermal Modeling (熱計算のための数値モデル)
  •  モンテカルロ・シュミレーション
 
 このグリーンベルト・プロジェクトだけで、全ての CTQ について研究することはできないので、AHP や QFD を使って決めた優先順位に基づいて、最も重要な CTQ である温度特性に焦点を当てることにしました。そして Boundary Diagram を使って、装置のどの箇所の温度を調べるのか、研究の対象と範囲を明らかにしました。
 
 もし予想以上の温度上昇があるとすれば、それはどのような現象として現れるのか、どのようなことが原因でその現象が起こりうるのか、Fish Bone Diagram を使って不具合の事象と根本原因を洗い出しました。さらにその不具合の事象(Failure Modes/故障モード)と根本原因(Noise Factors)を P-Diagram に移し、それらの関係付け行いました。
 
 P-Diagram を Design FMEA に変換し、Design FMEA 上で、影響(Severity)や頻度(Occurrence)、検出可能性(Detectability)を検討しました。さらに危険優先指数(RPN: Risk Priority Number)の高い順から対応策を検討し、設計に反映させました。
 
 顧客要求や設計仕様、設計リスク等を理解した後、やっと新しい装置の設計を行いました。
 
 シックスシグマ
 
 一通り設計が完了した後、その設計に基づいて、熱計算のための数値モデルを作りました。この数値モデルを使ってモンテカルロ・シュミレーションを行い、新しい装置の熱容量が、目標値にどれだけ収まっているか、Z値と PNC(Probability of Non-Compliance)という値を使って確認しました。
 
 TRIZ が導き出した多次元移行原理をヒントに、装置内のコンポーネントの位置を調整し、Z値が最大(PNC値 が最小)となる最適なレイアウトを見つけました。そして最終的な Z値と PNC値から、 新しい装置の設計は熱的に妥当なものであると判断しました。
 

6. Verify(確認)フェーズ

 
 Verify フェーズでは以下のツールを使いました。
 
  •  統計分析処理
  •  仮説検定
 
 新しい装置はまだ調査のための設計段階なので、実際の装置はありませんでした。そのため「机上の数値モデル(熱計算)が信用できるのか」ということが問題となりました。
 
 そこで現存する比較的類似した製品(装置)を使って、この数値モデルが実際に使えるものかどうか、検討してみました。行ったことは、類似製品を基に同じ方法を使って熱計算・数値モデルを作り、それと実際の測定値を比較するという統計的分析です。
 
 許容できる測定誤差を基に、サンプルサイズの計算をして、その数の類似製品(装置)を用意しました。同じ条件で装置を運転し、温度データを測定しました。そしてその測定データと数値モデルから得た計算値を統計的に比較しました。行った統計的分析は以下の通りです。
 
  •  Normality Test
  •  Capability Analysis
  •  Equivalent Test
  •  Two Sample t-Test
  •  Linearity Test
 
 ...
 
 前回のその1に続いて解説します。
 

5. D/O(Design and Optimize/設計と最適化)フェーズ

 
 Design and Optimize フェーズでは以下のツールを使いました。
 
  •  Boundary Diagram
  •  Cause & Effect Diagram (Fish Bone Diagram)
  •  Parameter Diagram (P-Diagram)
  •  Design FMEA
  •  Thermal Modeling (熱計算のための数値モデル)
  •  モンテカルロ・シュミレーション
 
 このグリーンベルト・プロジェクトだけで、全ての CTQ について研究することはできないので、AHP や QFD を使って決めた優先順位に基づいて、最も重要な CTQ である温度特性に焦点を当てることにしました。そして Boundary Diagram を使って、装置のどの箇所の温度を調べるのか、研究の対象と範囲を明らかにしました。
 
 もし予想以上の温度上昇があるとすれば、それはどのような現象として現れるのか、どのようなことが原因でその現象が起こりうるのか、Fish Bone Diagram を使って不具合の事象と根本原因を洗い出しました。さらにその不具合の事象(Failure Modes/故障モード)と根本原因(Noise Factors)を P-Diagram に移し、それらの関係付け行いました。
 
 P-Diagram を Design FMEA に変換し、Design FMEA 上で、影響(Severity)や頻度(Occurrence)、検出可能性(Detectability)を検討しました。さらに危険優先指数(RPN: Risk Priority Number)の高い順から対応策を検討し、設計に反映させました。
 
 顧客要求や設計仕様、設計リスク等を理解した後、やっと新しい装置の設計を行いました。
 
 シックスシグマ
 
 一通り設計が完了した後、その設計に基づいて、熱計算のための数値モデルを作りました。この数値モデルを使ってモンテカルロ・シュミレーションを行い、新しい装置の熱容量が、目標値にどれだけ収まっているか、Z値と PNC(Probability of Non-Compliance)という値を使って確認しました。
 
 TRIZ が導き出した多次元移行原理をヒントに、装置内のコンポーネントの位置を調整し、Z値が最大(PNC値 が最小)となる最適なレイアウトを見つけました。そして最終的な Z値と PNC値から、 新しい装置の設計は熱的に妥当なものであると判断しました。
 

6. Verify(確認)フェーズ

 
 Verify フェーズでは以下のツールを使いました。
 
  •  統計分析処理
  •  仮説検定
 
 新しい装置はまだ調査のための設計段階なので、実際の装置はありませんでした。そのため「机上の数値モデル(熱計算)が信用できるのか」ということが問題となりました。
 
 そこで現存する比較的類似した製品(装置)を使って、この数値モデルが実際に使えるものかどうか、検討してみました。行ったことは、類似製品を基に同じ方法を使って熱計算・数値モデルを作り、それと実際の測定値を比較するという統計的分析です。
 
 許容できる測定誤差を基に、サンプルサイズの計算をして、その数の類似製品(装置)を用意しました。同じ条件で装置を運転し、温度データを測定しました。そしてその測定データと数値モデルから得た計算値を統計的に比較しました。行った統計的分析は以下の通りです。
 
  •  Normality Test
  •  Capability Analysis
  •  Equivalent Test
  •  Two Sample t-Test
  •  Linearity Test
 
 統計的分析の結果、数値モデルと実際の測定値が違うという十分な証拠は得られず、従って数値モデルは十分実用可能と判断し、その結果を基に新しい装置の設計を進めました。
 
 ・ ・ ・ ・ ・ ・ ・
 
 DfSS を使うことで、実際に装置を作る前に、顧客要求や設計仕様を満たすことを確認できました。また設計リスクも同時に減らすことができました。もし DfSS を使っていなかったら、きっと装置を作っては不具合を発見し、手直しを繰り返す、ということをしていたと思います。DfSS を使うことでコストを削減し、開発期間を短縮し、また性能や安全性を高めることができました。
 

  残り20% 続きを読むには・・・


この記事の著者

津吉 政広

リーンやシックスシグマ、DFSSなど、問題解決のためのフレームワークを使った新製品の開発や品質の向上、プロセスの改善を得意としています。「ものづくり」に関する問題を一緒に解決してみませんか?

リーンやシックスシグマ、DFSSなど、問題解決のためのフレームワークを使った新製品の開発や品質の向上、プロセスの改善を得意としています。「ものづくり」に関...


関連する他の活用事例

もっと見る
TRIZ を使用した DfSS事例 (その1)

        今回は事例として TRIZ を実際に使用した DfSS(Design for Six Sig...

        今回は事例として TRIZ を実際に使用した DfSS(Design for Six Sig...


スケールド・アジャイル・フレームワーク (SAFe) 初めての PI プランニング

        僕が勤める部門で導入を進めている スケールド・アジャイル・フレームワーク(SAFe)の初めて...

        僕が勤める部門で導入を進めている スケールド・アジャイル・フレームワーク(SAFe)の初めて...


あえて意思決定を遅らせるとは

   リーンシックスシグマで使うツールの多くは意思決定を助けます。優先順位をつけて意思決定を助けたり、システマチックな思考順序が意思決定に導い...

   リーンシックスシグマで使うツールの多くは意思決定を助けます。優先順位をつけて意思決定を助けたり、システマチックな思考順序が意思決定に導い...