データサイエンスに求められるプレゼンテーションスキルとは:データ分析講座(その319)

投稿日

データサイエンスに求められるプレゼンテーションスキルとは:データ分析講座(その319)

 

伝わらなければ意味はない。なぜなら、伝わらなければ、理解されないし、信用もされないし、一緒に何かをやろうともならないからです。ビジネスにおいてプレゼンテーションスキルは非常な重要な基礎スキルですが、データサイエンスの世界では、今まで以上に重要になっている気がします。なぜならば、リテラシーギャップが非常に大きくなりまくっているからです。どんどん、専門家と実務家、実務家と現場や経営者などの間で、どんどんリテラシーギャップが広がっています。データサイエンス技術の専門家と、データサイエンスを実務で活用する実務家(RやPythonなどのツールを使い実務課題に挑む人)の間に大きなリテラシーギャップがあり、広がっています。約10年前には、専門家≒実務家という感じだったので、ここ数年見られるようになった、リテラシーギャップです。データサイエンスを実務で活用する実務家と、現場や経営者などの間にも大きなリテラシーギャップがあり、広がっています。このギャップは以前からあります。

 

このあたりは、21世紀の読み書きそろばんは、数理・データサイエンス・AIだ! と叫ばれる所以の1つでしょう。今回は「データサイエンスに求められるプレゼンテーションスキルであるデータストーリーテリング」というお話しをします。

 

【記事要約】

データサイエンスの世界、データサイエンス系のプロジェクトは、バックグラウンドの異なる多くの人が関わってきますが、リテラシーギャップが非常に大きくなっている現在では、専門家と実務家、実務家と現場や経営者などの間で、そのギャップがますます広がっています。そのため、データサイエンティストが、関係者に対しデータインサイトや提言を明確かつ効果的に伝えることが、今まで以上に重要になっています。このプレゼンテーションスキルを、データストーリーテリングと言います。

【目次】

    1. データインサイトを伝える

    データサイエンティストは、より良いアクションや意思決定が行えるように、その結果を活用する現場や経営者に対し、データを分析した結果に対し解釈を加え提供します。よくあることだと思います。この提供する「解釈付きのデータ分析結果」を、データインサイトとここでは表現します。ただ、このデータインサイトが、効果的に伝えられなければ、より良いアクションや意思決定が行えない可能性があります。

     

    2. キーになるのが、プレゼンテーションスキル

    優れたプレゼンテーションスキルを持つデータサイエンティストは、データインサイトを明確かつ効果的に伝えることができることでしょう。データ活用する現場や経営者などが、そのデータインサイトを理解することで、より良いアクションや意思決定が行うことが容易になります。きっとおそらく、データ活用する現場や経営者などとの信頼を築く鍵となることでしょう。

     

    3. 提言に耳を傾けるようになる

    価値あるデータインサイトが明確かつ効果的に伝わると、「なるほど」と思ってもらえ、その先の「提言(サジェスチョン)」に対し聞く耳をもってくれるかもしれません。逆に、データインサイトが明確かつ効果的に伝わらないと、その先の「提言(サジェスチョン)」を辛抱強く聞いてくれる可能性は低くなることでしょう。では、価値あるデータインサイトが明確かつ効果的に伝われさえすればいいのか、となるとそうでもありません。

     

    4. データストーリーテリング

    データインサイト(ファクトと洞察)と提言(サジェスチョン)の間に、当然ですが明確な関係性がある必要があります。さらに、説得力のあるストーリーである必要があります。そのプレゼーションスキルを、データストーリーテリングと言います。最近注目されています。

     

    5. コラボレーションの促進

    デー...

    データサイエンスに求められるプレゼンテーションスキルとは:データ分析講座(その319)

     

    伝わらなければ意味はない。なぜなら、伝わらなければ、理解されないし、信用もされないし、一緒に何かをやろうともならないからです。ビジネスにおいてプレゼンテーションスキルは非常な重要な基礎スキルですが、データサイエンスの世界では、今まで以上に重要になっている気がします。なぜならば、リテラシーギャップが非常に大きくなりまくっているからです。どんどん、専門家と実務家、実務家と現場や経営者などの間で、どんどんリテラシーギャップが広がっています。データサイエンス技術の専門家と、データサイエンスを実務で活用する実務家(RやPythonなどのツールを使い実務課題に挑む人)の間に大きなリテラシーギャップがあり、広がっています。約10年前には、専門家≒実務家という感じだったので、ここ数年見られるようになった、リテラシーギャップです。データサイエンスを実務で活用する実務家と、現場や経営者などの間にも大きなリテラシーギャップがあり、広がっています。このギャップは以前からあります。

     

    このあたりは、21世紀の読み書きそろばんは、数理・データサイエンス・AIだ! と叫ばれる所以の1つでしょう。今回は「データサイエンスに求められるプレゼンテーションスキルであるデータストーリーテリング」というお話しをします。

     

    【記事要約】

    データサイエンスの世界、データサイエンス系のプロジェクトは、バックグラウンドの異なる多くの人が関わってきますが、リテラシーギャップが非常に大きくなっている現在では、専門家と実務家、実務家と現場や経営者などの間で、そのギャップがますます広がっています。そのため、データサイエンティストが、関係者に対しデータインサイトや提言を明確かつ効果的に伝えることが、今まで以上に重要になっています。このプレゼンテーションスキルを、データストーリーテリングと言います。

    【目次】

      1. データインサイトを伝える

      データサイエンティストは、より良いアクションや意思決定が行えるように、その結果を活用する現場や経営者に対し、データを分析した結果に対し解釈を加え提供します。よくあることだと思います。この提供する「解釈付きのデータ分析結果」を、データインサイトとここでは表現します。ただ、このデータインサイトが、効果的に伝えられなければ、より良いアクションや意思決定が行えない可能性があります。

       

      2. キーになるのが、プレゼンテーションスキル

      優れたプレゼンテーションスキルを持つデータサイエンティストは、データインサイトを明確かつ効果的に伝えることができることでしょう。データ活用する現場や経営者などが、そのデータインサイトを理解することで、より良いアクションや意思決定が行うことが容易になります。きっとおそらく、データ活用する現場や経営者などとの信頼を築く鍵となることでしょう。

       

      3. 提言に耳を傾けるようになる

      価値あるデータインサイトが明確かつ効果的に伝わると、「なるほど」と思ってもらえ、その先の「提言(サジェスチョン)」に対し聞く耳をもってくれるかもしれません。逆に、データインサイトが明確かつ効果的に伝わらないと、その先の「提言(サジェスチョン)」を辛抱強く聞いてくれる可能性は低くなることでしょう。では、価値あるデータインサイトが明確かつ効果的に伝われさえすればいいのか、となるとそうでもありません。

       

      4. データストーリーテリング

      データインサイト(ファクトと洞察)と提言(サジェスチョン)の間に、当然ですが明確な関係性がある必要があります。さらに、説得力のあるストーリーである必要があります。そのプレゼーションスキルを、データストーリーテリングと言います。最近注目されています。

       

      5. コラボレーションの促進

      データサイエンス系のプロジェクトは、バックグラウンドの異なる多くの人が関わってきます。データサイエンティストや機械学習エンジニア、データエンジニアなどだけでなく、活用する現場の人やマネジャー、場合によっては経営者、社内外のIT専門家などです。結果的にダイバシティになります。そのため、効果的なコミュニケーションが、データサイエンス系のプロジェクトを成功させる鍵となります。

       

      優れたプレゼンテーションスキルを持つデータサイエンティストは、さまざまな背景や専門レベルを持つ関係者に、データインサイを明確に効果的に伝えることができるため、効果的なコラボレーションが容易になります。

       

      【ものづくり セミナーサーチ】 セミナー紹介:国内最大級のセミナー掲載数 〈ものづくりセミナーサーチ〉 はこちら!

       

         続きを読むには・・・


      この記事の著者

      高橋 威知郎

      データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)

      データネクロマンサー/データ分析・活用コンサルタント (埋もれたデータに花を咲かせる、データ分析界の花咲じじい。それほど年齢は重ねてないけど)


      「情報マネジメント一般」の他のキーワード解説記事

      もっと見る
      データから根本原因を考えるフレームワーク データ分析講座(その246)

        多くの人は、普段から何かしらの数値を眺めているかと思います。成績表やTOEICの点数、体重、売上、受注件数、リード件数、PV(ページビ...

        多くの人は、普段から何かしらの数値を眺めているかと思います。成績表やTOEICの点数、体重、売上、受注件数、リード件数、PV(ページビ...


      時系列データに対するクロスバリデーション法、データ分析講座(その307)

          ビジネスの世界では、売上などの時系列データを使い予測モデルを構築し、近未来を予測しながらビジネス活動する人や組織があり...

          ビジネスの世界では、売上などの時系列データを使い予測モデルを構築し、近未来を予測しながらビジネス活動する人や組織があり...


      メタ知識とデータカタログ データ分析講座(その69)

      ◆ データ分析の属人化を避けるためのメタ知識とデータカタログ  データ分析の特徴として、「属人化しやすい」という特徴があります。  なぜか属人化し...

      ◆ データ分析の属人化を避けるためのメタ知識とデータカタログ  データ分析の特徴として、「属人化しやすい」という特徴があります。  なぜか属人化し...


      「情報マネジメント一般」の活用事例

      もっと見る
      守秘義務は情報社会の命綱

        1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...

        1. 顧客データの管理  O社は、技術志向のエンジニアリング会社です。 扱う製品の設計図には、さまざまな情報が含まれています。クライアントから...


      ‐情報収集で配慮すべき事項(第1回)‐  製品・技術開発力強化策の事例(その9)

       前回の事例その8に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...

       前回の事例その8に続いて解説します。ある目的で情報収集を開始する時には、始めに開発方針を明らかにして、目的意識を持って行動する必要があります。目的を明確...


      個票データの共用化でコストダウン

       データ解析の効率は、生データとその整理の仕方で大きく異なると言えます。 例えば、アンケート結果は単なる生データであり、そのままでは解析出来ません。解析の...

       データ解析の効率は、生データとその整理の仕方で大きく異なると言えます。 例えば、アンケート結果は単なる生データであり、そのままでは解析出来ません。解析の...