「微分」 現場数学(その1)

更新日

投稿日

♦ 数学の教科書に書いてある通りにプログラムしてもだめ!では計算できない!

 サイン・コサイン何になる…とか嘯(うそぶ)いていた学生時代。しかし「現場に出て数学の重要性をひしひしと感じているのに、確実な理解が出来ていない…」と不安を抱いている技術者の皆さん。そこで、今回から18回にわたり「本当に意味のある“現場数学”とは何か」について私ともう一度考えてみませんか?

 

1.“現場数学”では、hは有限でなければならない

 高校で微分とか積分を習った時、先生が今まで見たことのない如何(いか)にも新しい式であると黒板に書く様に感激した経験を思い出します。しかし、これでは本当は計算できないのです。「現場数学」では、hは有限でなければなりません。となると…小さい、と思われる数、例えば0.00001とかにすれば良いということでしょうか?いえいえ、全くそうではないのです。この辺りから疑問を感じていた人は多いのです。でも、高校の先生に聞くと、ムニャムニャとした返事。それで数学が嫌いになった人がいるほどです。どうなっているのでしょうか?

 実はhは小さいどころか無限大でも良いのです!これは極端な話です。でも、高校数学で重要なことを教えていないことは確かなのです。また、大学に入ると微積分は途端にε-δの話になり、余計に誤魔化されてしまいます。実は、最初に考えなければならないのは対称性の問題なのです。通常の微分係数の記述は、

    

 です。しかし、これでは、xの位置から正方向のみの変化を見ることになり、その位置で増加している関数なら当然、x点での値より大きくなります。それにも関らず なのだから、正しい値に近づくはずと習うのです。これは一種の詭弁(きべん)です。二次関数y=x2にこの微分係数の式を当てはめてみましょう。

    

 となります。hだけの誤差があり、 で正しい2xになるという論法です。実は、この公式は前進公式と呼ばれます。xから正方向だけをみているからです。x点での微分係数を求めたいのですから、-h方向もみないといけません。それは後退公式と呼ばれる次式です。

    

 この式の誤差は-hです。ということは(2)式と(3)式の平均をとれば、hの大きさに依(よ)らず微分係数は2xと厳密に求まります。

    

 つまり微分係数はhに依らず、極端にいえばhは無限大でも良い式が作れたのです。この例では、2次関数の微分は一次関数ですから、hに依らず誤差が消えてしまいました。3次関数でも、何次関数でも同様に誤差を消してしまう公式が作れます。ぜひ、自分の手を動かして試して下さい。

2. より本質理解し、数式を上手に扱う

 この例題は、教科書に書いてある通りの式をそのままプログラムして、数値計算してはいけないことを如実に示しています。「現場数学」では、数値をなるべく正確にしかも効率良く計算しなければなりません。それを身につけるためには、このような高校の教科書に載っていなかった方策を勉強する必要があります。これは、頭の良...

♦ 数学の教科書に書いてある通りにプログラムしてもだめ!では計算できない!

 サイン・コサイン何になる…とか嘯(うそぶ)いていた学生時代。しかし「現場に出て数学の重要性をひしひしと感じているのに、確実な理解が出来ていない…」と不安を抱いている技術者の皆さん。そこで、今回から18回にわたり「本当に意味のある“現場数学”とは何か」について私ともう一度考えてみませんか?

 

1.“現場数学”では、hは有限でなければならない

 高校で微分とか積分を習った時、先生が今まで見たことのない如何(いか)にも新しい式であると黒板に書く様に感激した経験を思い出します。しかし、これでは本当は計算できないのです。「現場数学」では、hは有限でなければなりません。となると…小さい、と思われる数、例えば0.00001とかにすれば良いということでしょうか?いえいえ、全くそうではないのです。この辺りから疑問を感じていた人は多いのです。でも、高校の先生に聞くと、ムニャムニャとした返事。それで数学が嫌いになった人がいるほどです。どうなっているのでしょうか?

 実はhは小さいどころか無限大でも良いのです!これは極端な話です。でも、高校数学で重要なことを教えていないことは確かなのです。また、大学に入ると微積分は途端にε-δの話になり、余計に誤魔化されてしまいます。実は、最初に考えなければならないのは対称性の問題なのです。通常の微分係数の記述は、

    

 です。しかし、これでは、xの位置から正方向のみの変化を見ることになり、その位置で増加している関数なら当然、x点での値より大きくなります。それにも関らず なのだから、正しい値に近づくはずと習うのです。これは一種の詭弁(きべん)です。二次関数y=x2にこの微分係数の式を当てはめてみましょう。

    

 となります。hだけの誤差があり、 で正しい2xになるという論法です。実は、この公式は前進公式と呼ばれます。xから正方向だけをみているからです。x点での微分係数を求めたいのですから、-h方向もみないといけません。それは後退公式と呼ばれる次式です。

    

 この式の誤差は-hです。ということは(2)式と(3)式の平均をとれば、hの大きさに依(よ)らず微分係数は2xと厳密に求まります。

    

 つまり微分係数はhに依らず、極端にいえばhは無限大でも良い式が作れたのです。この例では、2次関数の微分は一次関数ですから、hに依らず誤差が消えてしまいました。3次関数でも、何次関数でも同様に誤差を消してしまう公式が作れます。ぜひ、自分の手を動かして試して下さい。

2. より本質理解し、数式を上手に扱う

 この例題は、教科書に書いてある通りの式をそのままプログラムして、数値計算してはいけないことを如実に示しています。「現場数学」では、数値をなるべく正確にしかも効率良く計算しなければなりません。それを身につけるためには、このような高校の教科書に載っていなかった方策を勉強する必要があります。これは、頭の良くなる本などで、特別な例を覚えておいて計算を早くする、という類のものではありません。より本質を理解して、数式を上手に扱う技法なのです。計算をするのに、そろばんを使おうとスーパーコンピューターを使おうと、どれも桁数は有限です。 は何倍精度を持ってしても厳密には成り立たないのです。そうではなく「現場数学」では、そもそも誤差を発生させなくする定式化、なるべく小さくする定式化をすることが肝要なのです。

 

 次回に続きます。

   続きを読むには・・・


この記事の著者

川添 良幸

市販の材料設計シミュレーションプログラムでは満足できない御社技術者に、本当に意味のある物理の基本に基づいた設計法を伝授します。我々の計算と実験結果が合わない場合は実験の方に問題があると言えるレベルを達成しています。

市販の材料設計シミュレーションプログラムでは満足できない御社技術者に、本当に意味のある物理の基本に基づいた設計法を伝授します。我々の計算と実験結果が合わな...


「SQC一般」の他のキーワード解説記事

もっと見る
~ 仏典の漢訳と全国測量 現場数学(その15)

  1.現場の規模 ~ 中国の一大国家事業  「三蔵法師が孫悟空たちを供に従え、天竺に仏典を求めた旅をした…」と、その通り...

  1.現場の規模 ~ 中国の一大国家事業  「三蔵法師が孫悟空たちを供に従え、天竺に仏典を求めた旅をした…」と、その通り...


転ばぬ先の杖~RFCの備え

 RFCとはResponse Flow Chart(若しくはchecksheet)の略語です。あまりポピュラーな用語ではありませんが、外資系の製造業では良...

 RFCとはResponse Flow Chart(若しくはchecksheet)の略語です。あまりポピュラーな用語ではありませんが、外資系の製造業では良...


~ 「フラクタル次元」 現場数学(その16)

  ♦ 単純そうに見え、実は奥が深い次元のお話 1.次元  空間には1次元、2次元、3次元とあり、時間も加えれば4次元があ...

  ♦ 単純そうに見え、実は奥が深い次元のお話 1.次元  空間には1次元、2次元、3次元とあり、時間も加えれば4次元があ...


「SQC一般」の活用事例

もっと見る
第1種の誤りと第2種の誤り

 「あわて者の誤り」と「ぼんやり者の誤り」をご存知ですか、あわて者の誤りは正式には『第一種の誤り』(Type Ⅰ error)と呼称し、ぼんやり者の誤りは...

 「あわて者の誤り」と「ぼんやり者の誤り」をご存知ですか、あわて者の誤りは正式には『第一種の誤り』(Type Ⅰ error)と呼称し、ぼんやり者の誤りは...


ビックデータ時代と米国大統領戦

 ビックデータ時代を考える事例として、今回の第45代米国大統領選挙を見てみます。第45代の米国大統領に、ドナルド・トランプ氏が決まりましたが、トランプ氏当...

 ビックデータ時代を考える事例として、今回の第45代米国大統領選挙を見てみます。第45代の米国大統領に、ドナルド・トランプ氏が決まりましたが、トランプ氏当...


統計教育が必須な検査担当者

 測定や検査結果の値で合格判定を行い、製品性能の品質保証をする事は製造業に取っては当たり前と言える日常的作業です。一方で検査や測定の正確さや信頼性を担保す...

 測定や検査結果の値で合格判定を行い、製品性能の品質保証をする事は製造業に取っては当たり前と言える日常的作業です。一方で検査や測定の正確さや信頼性を担保す...