Pythonを用いたディープラーニング実行の実習をやさしく行うセミナー!
講師
京都工芸繊維大学 情報工学・人間科学系 准教授 博士(工学) 飯間 等 先生
■ 主経歴
1995年京都工芸繊維大学助手/助教
2008年京都工芸繊維大学准教授となり、現在に至る。
■ 専門・得意分野
強化学習、深層学習、機械学習、遺伝的アルゴリズム、群知能、
進化計算、計算知能、最適化、スケジューリング
■ 本テーマ関連の学会・協会・団体等
日本の研究者らが執筆した強化学習の本「これからの強化学習」の著者の一人です。
受講料
1名54,000円(税込(消費税8%)、資料・昼食付)
*1社2名以上同時申込の場合 、1名につき43,200円
*学校法人割引 ;学生、教員のご参加は1名につき30,780円
セミナーポイント
■ 実習用パソコン
主催者にて準備します。
■ 受講対象
深層強化学習やそのPythonプログラムに興味のある方
■ セミナーポイント
ビデオゲームや囲碁で人間を超えて上手にプレイできる人工知能が大きな話題となっています。この人工知能で用いられている画期的な技術が深層強化学習と呼ばれる技術です。パターン認識のための深層学習と比較して、深層強化学習は事前知識を全く必要とせずに使用できることから世界中で注目を集めています。また、研究も活発に進められており、様々な改良案が提案されてきています。
本セミナーでは、深層強化学習やその基礎技術である強化学習と深層ネットワークを基礎から学びます。また、これらの技術をより深く理解するために、Pythonを用いた深層強化学習プログラムを実行する実習を行います。
■ 受講後、習得できること
・強化学習、深層ネットワークに関する基礎技術や動作の理解
・強化学習、深層ネットワークのプログラム開発技術の向上
・Pythonプログラミング技術の向上
セミナー内容
1.強化学習の例示(デモンストレーション)
1.1 最短経路探索
1.2 ゲームプレイ
2.強化学習問題
2.1 学習エージェントと環境
2.2 問題の定義
3.基本的な強化学習法
3.1 価値関数
3.2 Q学習
4.深層強化学習法
4.1 深層ネットワーク
4.2 深層ネットワークを用いるQ学習
5. 人間を超える最先端の深層強化学習法
5.1 深層強化学習に対する種々の改良
5.2 囲碁に対する学習法:AlphaGoZero
(質疑応答)
受講料
54,000円(税込)/人
※セミナーに申し込むにはものづくりドットコム会員登録が必要です
開催日時
10:30 ~
受講料
54,000円(税込)/人
※本文中に提示された主催者の割引は申込後に適用されます
※銀行振込
開催場所
東京都
【品川区】きゅりあん
【JR・東急・りんかい線】大井町駅
主催者
キーワード
機械学習・ディープラーニング
※セミナーに申し込むにはものづくりドットコム会員登録が必要です
開催日時
10:30 ~
受講料
54,000円(税込)/人
※本文中に提示された主催者の割引は申込後に適用されます
※銀行振込
開催場所
東京都
【品川区】きゅりあん
【JR・東急・りんかい線】大井町駅
主催者
キーワード
機械学習・ディープラーニング類似セミナー
関連セミナー
もっと見る関連教材
もっと見る関連記事
もっと見る-
驚異の多孔質構造が変える社会環境、MOF(金属有機構造体)の構造・機能、その市場とは
【目次】 現代社会は、地球温暖化対策のための二酸化炭素(CO₂)回収、クリーンエネルギーとしての水素貯蔵、医薬品の高効率な運搬、そして環... -
なぜ3S活動は失敗するのか? ボトムアップで進める現場改善の具体的な方法とは
【目次】 現代のビジネス環境において、製造業、医療、サービス業、そしてオフィスワークに至るまで、全ての現場に共通して求められるのが「... -
【専門家が解説】AIによる知財戦略はどこまで進化する?分析の高度化と未来像
【目次】 「競合他社の特許出願状況を、もっと早く正確に把握できないか?」 「膨大な技術文献から、自社の次の研究開発テーマのヒン... -
スマート工場とDXの違い、スマート工場が拓く生産革命の全貌
【目次】 ※本記事を執筆した専門家「濱田金男」が提供するセミナー一覧はこちら! 現在の製造業は、かつてないほど複雑で厳しい環境に置かれ...





