Python実習つき:機械学習の理解を深める!
全5パート、5つの課題に取り組みます!
セミナーに際して
▽実習PCについて
ノートPCをご持参ください。事前に以下のインストールをお願い致します。
・要インストールソフト
「Anaconda」 (Python 3.6バージョン)
https://www.continuum.io/downloads
「Chainer」
http://chainer.org
Anacondaインストール後に,コマンドラインから ”pip install chainer”でインストール可
*本件についての問い合わせ窓口: req@johokiko.co.jp
講師
大阪大学 産業科学研究所
知能アーキテクチャ研究分野 准教授 博士(情報科学) 福井 健一 先生
2005年~2010年3月 大阪大学産業科学研究所新産業創造物質基盤技術研究センター・特任助手(職名改名により2007年より特任助教)
2010年3月 大阪大学大学院情報科学研究科より 博士(情報科学)取得
2010年4月~2015年6月 大阪大学産業科学研究所第1研究部門(情報・量子科学系)・助教
2015年7月~現在 同 准教授
■講師より受講者へ
昨今のAIブームの火付け役とも言えるディープラーニングは強力な学習手法ですが、万能ではありません。問題の特性をよく理解して適切な機械学習手法を選択し、適切に用いることが重要です。本セミナーでは、機械学習の基本的な教師あり学習手法の考え方や理論的背景の説明とともに、Pythonを用いた簡単な実習を交えて機械学習の理解を深めます。これから本格的な勉強を始める前に概要と雰囲気を掴むには最適かと思います。
■受講対象者は?
・機械学習やディープラーニングに取り組んで間もない方
・Python等のツールを使いたい方、使いこなしたい方(Python初心者も歓迎)
・大学初等数学、情報系学部程度のプログラミング知識を持っていることが望ましい
■受講して得られる知見、ノウハウは?
・機械学習の体系的理解(俯瞰的知識)
・いくつかの代表的な教師あり学習手法とその理論的背景、またその実運用(実習を通じて)
・ディープラーニングの基本的な考え方と実運用の指針(実習を通じて)
※定員20名に達し次第、申込を締め切らせて頂きます。お申込はお早めに。
セミナー内容
1 機械学習の概要
1.1 ビッグデータ時代
1.2 機械学習とは?
1.3 最近の例
1.4 機械学習の分類
1.5 教師あり学習
1.5.1 識別
1.5.2 回帰
1.6 教師なし学習
1.6.1 モデル推定
1.6.2 パターンマイニング
1.7 半教師あり学習
1.8 深層学習(ディープラーニング)
1.9 強化学習
1.10 機械学習の基本的な手順
1.10.1 前処理
1.10.2 評価基準の設定:クロスバリエーション
1.10.3 簡単な識別器:k-近傍法
1.10.4 評価指標:F値,ROC曲線
1.11 k-近傍法を用いた実習:機械学習の基本的な手順の確認
2 識別(1):ベイズ学習
2.1 統計的機械学習とは
2.2 学習データの対数尤度
2.3 1次元2値の場合
2.4 ナイーブベイズ分類器
2.5 ベイジアンネットワーク
2.6 簡単な例
2.7 ベイジアンネットワークの構成
2.8 ベイジアンネットワークを用いた識別
2.9 ナイーブベイズ分類器を用いた実習
3 識別(2):線形識別モデル
3.1 識別モデル
3.2 ロジスティック識別概要
3.3 ロジスティック識別の導出
3.4 ロジスティック識別器の学習
3.5 確率的最急勾配法
3.6 正則化
3.7 ロジスティック識別器を用いた実習
4 識別(3):サポートベクトルマシン
4.1 サポートベクトルマシンとは
4.2 マージン最大化のための定式化
4.3 マージン最大化とする識別面の計算
4.4 ソフトマージン
4.5 カーネル関数
4.6 簡単なカーネル関数の例
4.7 入れ子交差検証によるハイパーパラメータ調整
4.8 サポートベクトルマシンを用いた実習
5 識別(4):パーセプトロンから深層学習まで
5.1 単純パーセプトロン
5.2 誤り訂正学習
5.3 最小二乗法による学習
5.4 多層ニューラルネットワーク
5.5 逆誤差伝搬法による学習
5.6 深層学習とは
5.6.1 従来の識別学習との違い
5.6.2 深層学習の分類
5.6.3 最近の応用例
5.7 多階層ニューラルネットワークの学習における問題
5.8 自己符号化器(Auto Encoder)による事前学習
5.9 Drop Out法による過学習の抑制
5.10 自己符号化器を用いた深層学習による実習
受講料
46,440円(税込)/人
※セミナーに申し込むにはものづくりドットコム会員登録が必要です
開催日時
10:30 ~
受講料
46,440円(税込)/人
※本文中に提示された主催者の割引は申込後に適用されます
※銀行振込
開催場所
東京都
【大田区】大田区産業プラザ(PiO)
【京急】京急蒲田駅
主催者
キーワード
データマイニング/ビッグデータ
※セミナーに申し込むにはものづくりドットコム会員登録が必要です
開催日時
10:30 ~
受講料
46,440円(税込)/人
※本文中に提示された主催者の割引は申込後に適用されます
※銀行振込
開催場所
東京都
【大田区】大田区産業プラザ(PiO)
【京急】京急蒲田駅
主催者
キーワード
データマイニング/ビッグデータ類似セミナー
-
2026/01/15(木)
10:30 ~ 16:30 -
関連セミナー
もっと見る-
2026/01/15(木)
10:30 ~ 16:30 -
関連教材
もっと見る関連記事
もっと見る-
データパイプラインの設計と活用ガイド、収集・統合・分析・意思決定への道のりを解説
【目次】 現代社会は、情報技術の進化とデジタルトランスフォーメーション(DX)の波により、未曾有の「データ駆動型社会」へと変貌を遂げ... -
中小企業における調達購買の現実~兼務と属人化のリスク~
【目次】 昨今、原材料価格の高騰や急激な円安の進行、サプライチェーンの不安定化など、企業を取り巻く経営環境は厳しさを増しています。特... -
高精度加工を実現!スリッティング技術の仕組みと進化、多様なニーズへの挑戦
【目次】 現代の製造業、特にエレクトロニクス、エネルギー、医療といった先端分野において、素材を扱う「高精度加工」は製品の性能を決定づ... -
なぜ今、調達購買機能が必要なのか?~経営を支える『見えない柱』の再評価と経営戦略~
【目次】 近年、世界経済は歴史的なインフレ、地政学的なリスクによるサプライチェーンの分断、そして原材料価格の激しい高騰という未曾有の...





