機械学習による統計的実験計画~ベイズ最適化を中心に~【Web配信】

ベイズ最適化の基本的な方法論と現実の問題を、どのように計算機上でシミュレート可能なモデルに落とし込むか?

【項目】※クリックするとその項目に飛ぶことができます

    セミナー趣旨

     科学的な営みを実行していく上で、「設計」や「計画」はおろそかにすることができない重要なプロセスです。設計や計画が問題の根幹となっている例は、ロボット開発、創薬、天然資源の探鉱など枚挙に暇がありません。近年、設計や計画問題に対するデータ駆動型のアプローチ、また、それを実現するための情報技術である機械学習が注目されています。
     データ駆動型のアプローチは、データ分析の方法だけでなく、データ収集の方法も考察および最適化の対象とします。特に後者の性質は、ものづくりなどデータ収集コストが非常に高い分野においては、重要な意味を持っていると考えられます。
     本セミナーでは、データ駆動型のアプローチの一つであるベイズ最適化に注目し、その基本的な方法論と現実の問題をどのように計算機上でシミュレート可能なモデルに落とし込むか、というアイデアについて解説したいと思います。

    セミナープログラム

    1. 導入
      1. データ取得コストが高い現実の問題(創薬・新規材料開発を例に)
      2. 機械学習によるデータ駆動型アプローチ(能動学習,実験計画という考え方について)
    2. ベイズモデルによる機械学習とベイズ最適化の基礎
      1. ブラックボックスなシステムのベイズ統計的モデリング
        1. ベイズ線形回帰
        2. ガウス過程回帰
      2. ベイズ最適化の方法論
        1. 導入:ブラックボックス関数のベイズ最適化
        2. 獲得関数の設計
        3. 連続値出力な関数に対するベイズ最適化
        4. 離散値出力な関数に対するベイズ最適化(2値出力を例に)
        5. ベイズ最適化におけるハイパーパラメータの調整
    3. 応用事例紹介
      1. 深層学習におけるハイパーパラメータチューニングへの応用
      2. 適応的マッピングによる材料の低品質領域の高速推定
      3. イオン伝導性物質の伝導度推定
    4. ベイズ最適化の実行
      1. Pythonによるベイズ最適化の実装方法の紹介
      2. ベイズ最適化の実行例のデモ紹介

    セミナー講師

    松井孝太(まついこうた)氏
    名古屋大学大学院 医学系研究科 総合医学専攻 生物統計学分野 講師(博士(情報科学))

    セミナー受講料

    お1人様受講の場合 51,700円[税込]/1名
    1口でお申込の場合 62,700円[税込]/1口(3名まで受講可能)

    受講申込ページで2~3名を同時に申し込んだ場合、自動的に1口申し込みと致します。

    受講について

    • 本セミナーの受講にあたっての推奨環境は「Zoom」に依存しますので、ご自分の環境が対応しているか、お申込み前にZoomのテストミーティング(http://zoom.us/test)にアクセスできることをご確認下さい。
    • インターネット経由でのライブ中継ため、回線状態などにより、画像や音声が乱れる場合があります。講義の中断、さらには、再接続後の再開もありますが、予めご了承ください。
    • 受講中の録音・撮影等は固くお断りいたします。

     

    受講料

    51,700円(税込)/人

    ※セミナーに申し込むにはものづくりドットコム会員登録が必要です

    開催日時


    11:00

    受講料

    51,700円(税込)/人

    ※本文中に提示された主催者の割引は申込後に適用されます

    ※銀行振込

    開催場所

    全国

    主催者

    キーワード

    機械学習・ディープラーニング   SQC一般   CAE/シミュレーション

    ※セミナーに申し込むにはものづくりドットコム会員登録が必要です

    開催日時


    11:00

    受講料

    51,700円(税込)/人

    ※本文中に提示された主催者の割引は申込後に適用されます

    ※銀行振込

    開催場所

    全国

    主催者

    キーワード

    機械学習・ディープラーニング   SQC一般   CAE/シミュレーション

    関連記事

    もっと見る