プロセスインフォマティクスを活用した材料製造プロセスの最適化とデータ解析高度化による研究開発およびものづくりの新展開【LIVE配信・WEBセミナー】
■注目ポイント
★化学プロセスデータに対する機械学習の適用方法および注意点をわかりやすく解説!
セミナー趣旨
■本セミナーの主題および状況(講師より)
★日本のものづくりをけん引する機能性材料は,材料そのものの開発だけでなくそれを素材に加工したり,要素に作りこんだりするためのプロセスの開発も重要です.たとえば,マテリアルズインフォマティクスで開発された新材料も,それを実用化するためにはプロセスの最適化を避けられません.逆に,既存の材料でもプロセスでその機能を飛躍的に伸ばすこともできます.生産プロセスは,その種類やステップだけでも様々で,パラメータの組み合わせも膨大です.世界的な研究開発のハイスループット化の波の中で,日本の強みとされてきた勘・コツ・経験を活かした仮説駆動型プロセス開発法に,データ駆動型開発法を取り入れた方法,すなわちプロセスインフォマティクスが今こそ必要です.
★プロセスインフォマティクスは、材料の化学反応や物理的変化を適切に制御し、理想的な材料特性を作りこむための技術であり、材料開発の効率化、製品の品質向上、品質ばらつきの低減、生産コストの削減に直結する。 製造プロセスは、原料の種類や投入手法、反応条件など多くの制御因子が互いに複雑に関係しあっており、適切な制御は容易ではない。従来の原因解明型の管理方法では、課題の再発や新たな課題の発生が避けられないことが多く、これを解決するためにインフォマティクス技術の活用が進められている。 通常、製造プロセスで扱われるデータは、因子が複雑で、膨大である。これらデータの前処理、可視化が、プロセスインフォマティクスを有効に活用するための重要なポイントであり、製造プロセスの最適化の成否を左右する。
■注目ポイント
★化学プロセスデータに対して機械学習をどのように適用したら良いかまた応用する際にどういった点に気をつければ良いかという点をわかりやすく解説!
習得できる知識
第2部
・素材開発におけるプロセスインフォマティクス活用における必要な考え方
・製造プロセスデータ解析における、実践的なアプローチと進め方
・品質予測精度を高めるための「特徴量設計」の考え方と実践のコツ
・実験自動化の取り組みに必要な考え方と取り組みの事例
第4部
・化学プロセスデータの特徴に関する基礎知識
・機械学習によるスペクトルの分類と低次元化に関する基礎と事例
・機械学習による予測モデル作成に関する基礎と事例
・機械学習によるスペクトルの自動解析技術に関する基礎
セミナープログラム
【第1講】 プロセスインフォマティクスを活用した機能性材料のプロセス最適化と粉体成膜技術の新展開【時間】 09:00-10:00
【講演主旨】
日本のものづくりをけん引する機能性材料は,材料そのものの開発だけでなくそれを素材に加工したり,要素に作りこんだりするためのプロセスの開発も重要です.たとえば,マテリアルズインフォマティクスで開発された新材料も,それを実用化するためにはプロセスの最適化を避けられません.逆に,既存の材料でもプロセスでその機能を飛躍的に伸ばすこともできます.生産プロセスは,その種類やステップだけでも様々で,パラメータの組み合わせも膨大です.世界的な研究開発のハイスループット化の波の中で,日本の強みとされてきた勘・コツ・経験を活かした仮説駆動型プロセス開発法に,データ駆動型開発法を取り入れた方法,すなわちプロセスインフォマティクスが今こそ必要です.本講演では,粉体成膜プロセスを事例に,機能性材料のプロセスインフォマティクスの可能性と展望を紹介します.
【プログラム】
※現在、最新のご講演主旨を講師の先生にご考案いただいております。完成次第本ページを更新いたします。
【第2講】 素材開発における反応プロセスのインフォマティクス活用と実験自動化の実践【時間】 10:15-11:30
【講演主旨】
材開発における製造プロセスの最適化は、高品質な製品を効率的に生み出すために不可欠である。特に反応プロセスは多数の因子が複雑に絡み合い、従来のアプローチでは課題解決に限界があった。これを解決するインフォマティクス技術の活用が進められている。
本講演では、当社が実際に取り組んだ製造プロセスの最適化に関する事例を紹介し、課題解決の成否を左右した「データの前処理」と「可視化」、そして「品質制御のための機械学習手法」に焦点を当てる。実際の事例に沿って、データハンドリングやプロセスを制御するための特徴量設計といった実践的ノウハウを解説する。さらに、実験自動化による自律的な開発サイクルの未来像や当社の取り組みについても紹介する。
【プログラム】
1.はじめに
・当社R&Dの目指す姿
・素材・材料開発へのインフォマティクス活用とその期待
2.反応制御におけるインフォマティクス活用
・材料開発における反応プロセス制御の重要性
・反応プロセス制御の課題とインフォマティクス活用
3.事例から見る反応プロセスへのインフォマティクス活用
・テーマ概要 複数の反応プロセスからなる原料の品質設計
・データ可視化の重要性
・データ解析は反応プロセスのどこまで考慮するか
・反応プロセスを制御するための特徴量側の工夫
・おまけ 成果を創出するためのインフォマティクス活用体制の仕組み化
・実験自動化に関する世の中の動向
・実験自動化に関する当社の取り組み紹介
【キーワード】
インフォマティクス、プロセスインフォマティクス、機械学習
【講演のポイント】
製造現場で発生した課題に対して、プロセスインフォマティクス(PI)を活用し、
その解決に繋げた実際の事例を通じて、PIを有効に活用するための考え方、準備、
実践的な解析の手法について解説します。
【時間】 11:45-13:00
【講演主旨】
研究開発の高速化、膨大な候補の中から人では見逃していた予想外の発見を促すことを目的にデータサイエンスを活用したマテリアルズ・インフォマティクスやプロセス・インフォマティクスが発展している。本講演ではこうした技術について紹介し、新たなデータ社会の中でのものづくりについて議論する。
【プログラム】
※現在、最新のご講演主旨を講師の先生にご考案いただいております。完成次第本ページを更新いたします。
【第4講】 化学プロセススペクトルデータ解析における機械学習の基礎と応用【時間】 14:00-15:15
【講演主旨】
データ科学によって化学プロセスデータの利活用を促進し、研究・開発を加速することを目指すプロセス・インフォマティクスやケモインフィマティクスが高い注目を集めています。特に、反応プロセス環境や物質・材料の状態をモニターするためには欠かすことができないスペクトル解析に目を向けると、スペクトルデータを大量に取得できる装置環境が整ってきているとはいえ、複雑な形状をとるものや、フィッティングにかかる手間などから網羅的に解析・情報抽出を実施することが困難になってきています。本講演は、このようなスペクトルデータ解析の課題に注目をし、取得したスペクトルデータからの情報抽出のための機械学習活用について、「分類」「低次元化」「回帰」「ピーク検知」といった視点から、機械学習の数理的な側面も交えながら基礎的な内容を紹介します。
【プログラム】
1.化学プロセスデータに対する学習の基礎 1)機械学習の基礎
2)機械学習応用の流れと課題設定の重要性
3)代表的な機械学習応用事例の紹介
4)化学プロセスデータの特徴と注意点
5)情報科学市民権
6)材料科学の立場として忘れてはいけないこと
2.スペクトルデータの低次元化とクラスター解析
1)高次元データとしてのスペクトルと低次元化の重要性
2)分類:教師あり学習と教師なし学習
3)特徴空間と類似度
4)特徴空間の解釈性と表現性
5)主成分解析によるスペクトルの低次元化
6)k-means法によるスペクトルの分類
7)階層的クラスタリングによるスペクトルの分類
3.予測(回帰):予測モデルとモデル選択
1)予測・モデル選択の応用例
2)モデル推定の種類(最尤法, MAP推定, ベイズ推定)
3)確率論的にみた回帰と正則化
4)非線形モデリングの困難
a)マルコフ連鎖モンテカルロ法によるパラメータ最適化
b)情報量基準によるモデル選択
c)解析事例
4.スペクトル解析のためのEMアルゴリズムによるピーク検知
1)ピーク検知のための処理フロー
2)非線形最小二乗法の困難
3)回帰と分布推定の違い
4)ガウス分布の最尤推定
5)EMアルゴリズムによる最尤推定
6)スペクトル解析のための改良EMアルゴリズム
7)解析事例
【質疑応答】
【キーワード】
マテリアルズ・インフォマティクス, 化学プロセス, スペクトル解析, 低次元化
【講演のポイント】
化学プロセスデータに対して機械学習をどのように適用したら良いか、また応用する際にどういった点に気をつければ良いか、という点をわかりやすく解説いたします。機械学習に関する事前知識がなくても問題ありません。
セミナー講師
第1部 東京大学 大学院工学系研究科 機械工学専攻 / 教授 長藤 圭介 氏
第2部 積水化学工業株式会社 先進技術研究所 情報科学推進センター センター長 (兼) MI推進グループ グループ長 新明 健一 氏
第3部 産業技術総合研究所 ナノカーボンデバイス研究センター/主任研究員 室賀 駿 氏
第4部 東京科学大学 総合研究院 / 准教授 安藤 康伸 氏
セミナー受講料
【1名の場合】60,500円(税込、テキスト費用を含む)
2名以上は一人につき、16,500円が加算されます。
受講料
60,500円(税込)/人





