初心者向けセミナーです Pythonではじめる機械学習入門講座<PC実習付き>

現場で使える理論と実践! コンピュータ言語Pythonと
機械学習系ライブラリ(scikit-learn)を解説。

【項目】※クリックするとその項目に飛ぶことができます

    セミナー趣旨

     機械学習の入門講座(セミナー)は、巷にたくさんありますが、理論と実践が揃って、はじめて現場で使える技術とになります。本セミナーでは、機械学習の理論的側面のみではなく、コンピュータを用いた実践演習を通して、理解を深めていきます。同時に、実践演習では、最近様々な分野で、注目を集めているコンピュータ言語Pythonと機械学習系ライブラリ(scikit-learn)を用います。

    受講対象・レベル

     純粋に最近流行りのPythonを学びたい人から、業務でデータ処理・解析をしたい人まで、幅広い方を対象とします。特に、日々大量のデータを扱っていて、そのデータの山から知識を引き出したいと思っている方が最適な受講対象者となります。
     Pythonでコーディングした経験がない人も歓迎しますが、演習を通して学んでいきますので、他の言語によるプログラミングの経験や、コンピュータ(アプリケーションソフトウェア)によるデータ処理の経験がある方が望ましいです。

    習得できる知識

    1)Pythonの基本的なコーディング方法
    2)Pythonの各種ライブラリの活用方法
    3)代表的な機械学習(教師あり学習、教師なし学習)の基礎理論
    4)機械学習ライブラリscikit-learnを活用した機械学習アルゴリズムの実装方法
    5)機械学習によるデータ処理・分析・可視化方法

    セミナープログラム

    1.はじめに
     1-1 講師自己紹介
     1-2 セミナーの狙い

    2.演習環境の確認
     2-1 Pythonの実行環境の確認(ディストリビューションAnaconda利用)
     2-2 各種ライブラリ(NumPy,SciPy,matplotlib,IPython,pandas,mglearn,scikit-learn)の実行環境の確認
     2-3 統合開発環境Spyderの実行環境の確認
     2-4 Pythonの実行方法(インタプリタ,コマンド渡し,統合開発環境)

    3.Python入門講座
     3-1 Pythonの特徴
     3-2 なぜいまPythonか?
     3-3 Pythonの基本文法
     3-4 コーディング方法(統合開発環境Spyderの使い方含む)
     3-5 各種ライブラリ(NumPy,SciPy,matplotlib,scikit-learn,mglearnなど)の使い方
     3-6 機械学習アルゴリズムの実装方法
     3-7 サンプルコードを用いた実践演習
     3-8 参考書・情報源の紹介

    4.機械学習概論
     4-1 機械学習の概要
     4-2 三大学習法(教師あり学習,教師なし学習,強化学習)
     4-3 機械学習データセットの紹介
     4-4 機械学習におけるデータの著作権
     4-5 専門書・参考書の紹介

    5.教師あり学習
     5-1 教師あり学習の概要
     5-2 クラス分類と回帰
     5-3 過剰適合と適合不足
     5-4 モデル複雑度と精度
     5-5 多クラス分類
     5-6 各種教師あり学習アルゴリズムの基礎理論と実践演習
      5-6-1 k-最近傍法(クラス分類,回帰)
      5-6-2 線形モデル(線形回帰,Ridge回帰,Lasso回帰,ロジスティック回帰)
      5-6-3 サポートベクトルマシン(線形モデル,非線形モデル) 
      5-6-4 決定木
      5-6-5 アンサンブル学習(ランダムフォレスト,アダブースト)

    6.教師なし学習
     6-1 教師なし学習の概要
     6-2 次元削減と特徴量抽出
     6-3 各種教師なし学習アルゴリズムの基礎理論と実践演習
      6-3-1 主成分分析(次元削減)
      6-3-2 k-平均法(クラスタリング)
      6-3-3 凝集型クラスタリング
      6-3-4 DBSCAN(クラスタリング)

    7.実装上の注意事項 
     7-1 データの前処理(スケール変換など)
     7-2 テスト誤差の最小化(交差検証)
     7-3 ハイパパラメータの最適化(グリッドサーチなど)
     7-4 実データの読み込み方法

    8.まとめと質疑応答


    キーワード:Python,機械学習,教師,あり,なし,実装,アルゴリズム,セミナー,研修,講座

    セミナー講師

    愛知県立大学 情報科学部 情報科学科
    教授 博士(工学) 小林 邦和 氏

    セミナー受講料

    55,000円(税込、資料付)
    セミナー主催者からの会員登録をしていただいた場合、
    ・1名で申込の場合、44,000円、
    ・2名同時申込の場合、計55,000円(2人目無料:1名あたり27,500円)で受講できます。
    (セミナーのお申し込みと同時に会員登録をさせていただきますので、今回の受講料から会員価格を適用いたします。)
    ※ 会員登録とは
      ご登録いただきますと、セミナーや書籍などの商品をご案内させていただきます。
      すべて無料で年会費・更新料・登録費は一切かかりません。
      メールまたは郵送でのご案内となります。
      郵送での案内をご希望の方は、備考欄に【郵送案内希望】とご記入ください。

    受講について

    ・本セミナーは「Zoom」を使ったWEB配信セミナーとなります。

    【Zoomを使ったWEB配信セミナー受講の手順】
    1)Zoomを使用されたことがない方は、こちらからミーティング用Zoomクライアントをダウンロードしてください。ダウンロードできない方はブラウザ版でも受講可能です。
    2)セミナー前日までに必ず動作確認をお願いします。Zoom WEBセミナーのはじめかたについてはこちらをご覧ください。
    3)開催日直前にWEBセミナーへの招待メールをお送りいたします。当日のセミナー開始10分前までに招待メールに記載されている視聴用URLよりWEB配信セミナーにご参加ください。

    ・セミナー資料は開催前日までにお送りいたします。無断転載、二次利用や講義の録音、録画などの行為を固く禁じます。


    ◆注意事項◆

    本セミナーでは、演習を行いますので、以下の条件を満たしたノートパソコンを準備して下さい。

    1)プラットフォームは、Windows、Linux、MacOSを問いません。

    2)演習環境を統一したいので、事前にAnacondaを用いて、Python 3.x(バージョン3系)をインストールしておいて下さい。

    3)Anacondaを利用すると、演習で必要な標準・外部ライブラリがほとんど自動インストールされますが、mglearnのみ個別インストールが必要となります。個別インストールは、Windowsでは、Anaconda Promptを開き、pip install mglearnでインストールできます。

    4)演習で使用するサンプルコードは、セミナー開催前に配布いたします。

    5)本セミナーでは、Pythonの統合開発環境(IDE)として、Spyderを用いて説明を行います。事前にSpyderをインストールしておいていただけるとスムーズに演習が行えます。なお、Anacondaを利用した場合は、Spyderは自動インストールされます。

    6)教師あり学習、教師なし学習とも、「各種学習アルゴリズムの基礎理論と実践演習」では、当日の進行状況に応じて、すべての手法が取り上げられない可能性があります。


     

    受講料

    55,000円(税込)/人

    ※セミナーに申し込むにはものづくりドットコム会員登録が必要です

    開催日時


    10:30

    受講料

    55,000円(税込)/人

    ※本文中に提示された主催者の割引は申込後に適用されます

    ※銀行振込

    開催場所

    全国

    主催者

    キーワード

    機械学習・ディープラーニング   AI(人工知能)   情報技術

    ※セミナーに申し込むにはものづくりドットコム会員登録が必要です

    開催日時


    10:30

    受講料

    55,000円(税込)/人

    ※本文中に提示された主催者の割引は申込後に適用されます

    ※銀行振込

    開催場所

    全国

    主催者

    キーワード

    機械学習・ディープラーニング   AI(人工知能)   情報技術

    関連記事

    もっと見る