【中止】データから本質的な情報を取り出す予測・縮約・分類のための統計的多変量モデリング【ソフトウェア配付・PC演習付き】

製造業の実務で使う各種データ分析の
実践的な方法を事例を交え解説!

 ~製造業の統計・多変量解析 実務的基礎~
年間の受講者数が1000名を超える、企業での実務経験豊富な講師が丁寧に解説します!


※本セミナーはLIVE配信も実施する予定です。職場や自宅で受講したい方はこちらからお申し込みください。

セミナー講師

MOSHIMO研 代表 福井 郁磨 氏
<略歴>
1993年4月~ オムロン(株):電子部品の原理開発、加工技術開発、ロボットの研究開発、人の聴感判定を機械化した検査装置開発などに従事
2006年6月~ パナソニック(株):生活家電の要素技術、製品開発などに従事
2007年11月~ 東レ(株):液晶ディスプレイなどの微細加工技術開発などに従事
2010年4月~ LG Electronics Japan Lab(株):関西の新規研究所設立責任者、洗濯機チームリーダー、オープンイノベーション室長を歴任
2015年5月~ MOSHIMO研:製造業支援、開発コンサルティング、生活関連用品などの研究開発に従事
※人工知能応用技術、実験計画法、品質工学に関して、電子部品・ロボット・加工技術・検査技術・生活家電などの分野で、約23年の経験を持つ。
・日本品質管理学会会員
・品質工学会会員
・滋賀県品質工学研究会会員

セミナー受講料

55,000円(税込、昼食・資料付)
■ セミナー主催者からの会員登録をしていただいた場合、1名で申込の場合49,500円、
  2名同時申込の場合計55,000円(2人目無料:1名あたり27,500円)で受講できます。
  備考欄に「会員登録希望」と希望の案内方法【メールまたは郵送】を記入ください。
(セミナーのお申し込みと同時に会員登録をさせていただきますので、
   今回の受講料から会員価格を適用いたします。)
※ 会員登録とは
  ご登録いただきますと、セミナーや書籍などの商品をご案内させていただきます。
  すべて無料で年会費・更新料・登録費は一切かかりません。


■持参物
Excel(32bit)をインストール済みのWindows PCを持参ください。演習を実施します。

また、 お申込み頂いた受講者のみに、下記ソフトウェアのexeファイル3点を配布いたします。
開催7日前をめどに、お送りいたします。
事前に持参するWindows PCにインストールしておいてください。

 ・多変量解析ソフトウェア(演習で使用するソフトウェア)
 ・実験計画法(品質工学)解析ソフトウェア(参考として6章で紹介)
 ・人工知能ソフトウェア(参考として6章で紹介)

なお、配布するソフトウェアは、Windows PC以外のOSには対応していません。
Windowsは、Windows7、Windows10の32bit、64bitどちらでも可。

セミナー趣旨

 製造業では、多くのデータを取扱いますが、データから価値ある情報を取り出し、解釈するためには各種統計的な解析を使用する必要があります。
 統計解析、あるいは多変量解析は、データの要約、傾向の確認、原因分析、今後の予測などの解析が行えますが、目的に合わせて適切な手法を選択する必要があります。
 最近トピックスになっている人工知能に関しても、効率的な学習を行うためには、データの与え方の工夫や、学習に適した形にデータを加工する必要があります。その際にも、前述した統計解析・多変量解析によるデータ分析が必要になります。
 一方で、統計・多変量解析を習得しようとすると、従来は、実務では実際には使用しない内容を無味乾燥な数式で学ぶ必要があります。
 また、データ分析には統計・多変量解析ソフトウェアが必要になります。しかしながら、統計・多変量解析ソフトウェアは、下記のように2極化しており、簡単に導入・活用するにはためらいがともなう状況です。

・無料で使用できる反面、プログラムのような記述が必要な「R」
・Excelライクで直感的に使用でき、かつ極めて高機能な反面、高額なため「1人1ソフトウェア体制」や「思い立ったら誰でもデータ解析をする体制」には向かない「JMP」「SPSS」「StatWorks」

 本講座では、アカデミックな内容は最小化し、製造業の実務で使う各種データ分析の実践的な方法を中心に講義いたします。また、無味乾燥な数式の解説ではなく、具体的な事例を通して、データ分析の基礎と手順を解説いたします。
 そして、無料で導入でき、EXCELライクで直感的に使用できる統計解析パッケージソフトウェアを使い、実際にデータ分析の演習を行います。

受講対象・レベル

・要素技術、生産システム、品質管理などの分野でデータ分析・統計・多変量解析スキルが必要な方々
・マーケティング、商品企画等で、顧客ニーズ、コンセプトメイキングのためにデータ分析・統計・多変量解析スキルが必要な方々
・人工知能を活用するために、データの前処理、データの解釈、人工知能の予測能力の評価等の手法を習得したい方々
・複数の要因によって、目的とする対象がどのように変化するか、予測や説明を行う方法を求めている方々
・複数の要因があるデータに対して、それら複数項目を代表する総合的な指標を求める(データの縮約)方法を求めている方々
・数多くのデータをグルーピングし、適切に分類、階層化する方法を求めている方々
・複数のデータ間の複雑な関係を説明する、潜在的な構造を求める方法を求めている方々

※統計解析・多変量解析・人工知能に関する予備知識は必要ありません。

※技術コンサルタントの方や、講師業の方は、受講をご遠慮ください。
(企業/大学等への所属有無を問わず、実質的に、社外に技術指導・講演をされている方は、受講をお断りしております。)
※上記につきまして、申込後にご確認させていただく場合がございます。

習得できる知識

・実務で使えるデータ分析手法の基礎 ⇒基本的なデータの要約(統計量)とグラフ化
・統計解析の危うさとグラフによる目視確認の重要性
・データ分析手法の体系と成果が出やすい手法
・多変量解析ソフトウェアの操作方法
・複数の要因によって、ある目的とする項目がどのように変化するか、予測や説明を行う方法 ⇒重回帰分析
・複数の要因があるデータに対して、それら複数項目を代表する総合的な指標を求める方法(データを縮約する方法) ⇒主成分分析
・数多くのデータをグルーピングし、適切に分類、階層化する方法 →クラスター分析
・複数のデータ間の複雑な関係を説明する、潜在的な構造を求める方法 →因子分析(ただし、製造業の実務使用では適応し難いため、代用手法を解説)
など

セミナープログラム

1.実務で使えるデータ分析手法の基礎
 1)統計解析・多変量解析とは
 2)基本的なデータ要約方法 -基本的な統計量 
 3)グラフ化による目視確認の重要性
 4)実務でよく使用する各種グラフ
 5)ソフトウェア紹介

2.複数の要因によって、ある目的とする項目がどのように変化するか、予測や説明を行う
 1)重回帰分析(回帰式の構築)とは 
 2)重回帰分析の手順、チェックノウハウ
 3)参考:判別分析
 4)データ分析演習

3.数多くのデータをグルーピングし、適切に分類する
 1)クラスター分析(類似した特徴を持つグループ化とグループの階層化分析)とは
 2)クラスター分析の手順、チェックノウハウ
 3)データ分析演習

4.複数の要因があるデータに対して、それら複数項目を代表する総合的な指標を求める
 1)主成分分析(データの縮約、データの合成分析)とは
 2)主成分分析の手順、チェックノウハウ
 3)データ分析演習

5.複数のデータ項目間の複雑な関係を説明する、潜在的な構造を求める
 1)因子分析(潜在変数の見える化、データの分解分析)とは
 2)因子分析のエンジニアリング実務上の問題点と対策(代用手法)
 3)参考:因子分析の手順、チェックノウハウ
 4)参考:データ分析デモ(時間があれば)

6.その他の分析方法
 1)要因の組合せ最適化を行う方法 →実験計画法 概要
 2)より高度な組合せ最適化方法 →品質工学(タグチメソッド)概要
 3)重回帰式の上位版 →ニューラルネットワークモデル(深層学習)概要
 
7.質疑応答


キーワード
統計,多変量,解析,データ,重回帰,分析,回帰モデル,主成分,因子,クラスター,人工知能