初心者向けセミナーです 状態推定アルゴリズム~パーティクルフィルタの基礎・応用・実装【Web配信】

パーティクルフィルタの基礎・方法論から
応用・プログラム実装まで網羅的に解説!


☆本セミナーは、Zoomを使用して行います。☆

セミナー講師

生駒哲一(いこまのりかず) 氏
日本工業大学 基幹工学部 電気電子通信工学科 教授(博士(学術))

<略歴、等>
1989年 法政大学 工学部 電気工学科 計測制御専攻卒業
1991年 法政大学大学院 工学研究科 システム工学専攻 修士課程修了
1995年 総合研究大学院大学 数物科学研究科 統計科学専攻 博士課程修了
1995年4月 広島市立大学 情報科学部 情報機械システム工学科 助手
1998年4月 九州工業大学 工学部 電気工学科 講師(専任)
 同在職中、2002年7月〜2003年4月に文部省在外研究員制度にて、英国ケンブリッジ大学工学部 信号処理研究グループ に滞在(客員研究員)
2003年9月 九州工業大学 助教授
2008年4月 九州工業大学大学院 工学研究院 電気電子工学研究系 准教授
2016年4月 日本工業大学 工学部 情報工学科 教授
2018年4月より、学内改組に伴い基幹工学部 電気電子通信工学科に所属変更
 現在に至る
<学会活動、等>
IEEE、計測自動制御学会、電子情報通信学会、日本統計学会、応用統計学会、日本知能情報ファジィ学会、日本神経回路学会、信号処理学会、自動車技術会の会員
2005年 パーティクルフィルタ研究会を発足して主宰
<主な受賞>
Best Paper Award of ISCIIA2004(平成16年12月)
Best Paper Award of ISCIIA2012(平成24年8月)
JACIII Best Paper Award in 2013 for 2010-2012(平成25年8月)
貢献賞(日本知能情報ファジィ学会賞)、受賞対象「SCIS&ISIS2014の運営」(平成27年9月)

セミナー受講料

お1人様受講の場合 46,000円[税別]/1名
1口でお申込の場合 57,000円[税別]/1口(3名まで受講可能)
受講申込ページで2~3名を同時に申し込んだ場合、自動的に1口申し込みと致します。

受講について

  • 本セミナーの受講にあたっての推奨環境は「Zoom」に依存しますので、ご自分の環境が対応しているか、
    お申込み前にZoomのテストミーティング(http://zoom.us/test)にアクセスできることをご確認下さい。
  • インターネット経由でのライブ中継ため、回線状態などにより、画像や音声が乱れる場合があります。
    講義の中断、さらには、再接続後の再開もありますが、予めご了承ください。
  • 受講中の録音・撮影等は固くお断りいたします。

セミナー趣旨

 時々刻々と変化するシーン中の動く対象物を追跡する課題に対して、効果的な解を与える「パーティクルフィルタ」について、その基礎・方法論から応用、プログラム実装までを網羅した講義内容である。
 確率・統計、ベイズ推定を出発点として、問題設定である「状態空間モデル」の定式化、その解を求める「状態推定」課題の明確化、状態推定の数式としての解(形式的な解)を理解する。これらの理論的な事実に基づいた方法論として、具体的な状態推定のアルゴリズム群を俯瞰する。カルマンフィルタに代表される解析的なフィルタ、パーティクルフィルタをはじめとする各種の近似フィルタ、および、更に発展的な方法について学ぶ。併せて、過去の時刻の推定である「平滑化」や、状態空間モデルに含まれる固定パラメータの推定についても触れる。発展的な課題として、複数対象の同時推定についても概観する。これらの理論および方法論を活用した応用として、複数分野の具体的な事例について概説する。プログラミングの実装例についても簡単に紹介する。

セミナープログラム

1 状態空間モデルと状態推定
 1.1 確率と統計
 1.2 ベイズ推定・逐次ベイズ推定
 1.3 状態空間モデル
 1.4 状態推定とその形式的解

2 状態推定のアルゴリズム
 2.1 解析的フィルタ〜カルマンフィルタ
 2.2 近似フィルタ〜パーティクルフィルタ
 2.3 発展的な方法〜逐次モンテカルロフィルタ
 2.4 平滑化と固定パラメータ推定
 2.5 複数対象の同時推定

3 応用事例の解説
 3.1 簡単なモデルでの原理確認
 3.2 時系列解析
 3.3 ターゲット追跡
 3.4 動画像追跡
 3.5 マルチセンサ融合
 3.6 移動ロボットの自己位置推定と地図学習
 3.7 複数対象の同時追跡

4 プログラミング実装
 4.1 C/C++実装
 4.2 Python実装