はりについて プラスチック製品設計はりの強度計算(その1)

投稿日

1. はりの強度計算

 
 構造解析ソフトを使った強度解析は、設計者でも容易に実施できるようになって久しい。しかし、3Dモデルの作成や境界条件の設定などに時間がかかるため、まだ電卓並みというわけにはいかないのです。強度解析を効率よく実施するためには、ある程度の当たり付けをした後に構造解析ソフトを使うことが望ましいでしょう。当たり付けの有力な手段がはりの強度計算です。今回は、はりの強度計算について概要を解説します。
 

2. はりについて

 
 曲げ荷重を受ける細長い部材をはり(beam)と言います。垂直方向の圧縮荷重を受ける柱(column)と組み合わせることにより、建築や機械など様々な構造物で利用されています。プラスチック製品は一体成形されることが多いため、はりは使われていないと思うかもしれませんが、図1のように構造の一部をはりと考えることによって、はりの計算式を使った強度解析を行うことができます。
 
プラスチック図1 プラスチック製品の例
 
 はりは荷重の種類と支持方法の組み合わせによって多くの種類が存在します(図2、図3)。
 
プラスチック図2 荷重と支持方法の種類
 
プラスチック図3 はりの種類
 
 それぞれのはりごとに計算式が準備されており、断面特性、長さ、ヤング率(弾性率)を入力することにより、応力やたわみを求めることができます。
 
 

3. はりに発生する応力とたわみ

 
 はりに発生する応力とたわみを片持ちはりを例に説明します。片持ちはりの先端に荷重(集中荷重)をかけると、応力σとたわみwが発生します。
 
プラスチック図4 片持ちのはりに発生する応力
 
 はりには曲げモーメントが作用し、はりの上側に引張応力(σ1)、下側に圧縮応力(σ2)が発生します。応力は中立軸からの距離に比例して大きくなるため、はりの上下端で最大となります。
 
 曲げモーメントは、はりの長さ方向でグラフのように変化します。応力は曲げモーメントの大きさに比例するため、曲げモーメントの絶対値が最大となる根本部分で最も大きな応力が発生します(※1、※2)。根本部分の上端には引張応力の最大値、下端には圧縮応力の最大値が発生しますが、一般的にプラスチックは引張強度<圧縮強度であるため、上端が最も危険性の高い箇所であるといえる。また、最も大きなたわみが発生するのははりの先端部分となる(※2)。
 
 ※1 曲げモーメントは図4の向きを正と定義。反対向きに定義した場合は、根本部分の曲げモーメントは正となる。
 ※2 最大応力および最大たわみが発生する位置ははりの種類により異なる。
 
 はりに発生する応力は図5の計算式の組合せで求めることができます。
 
プラスチック図5 はりに発生する応力と中立面半径
 
 図5の計算式ははりの種類によらず同じです。曲げモーメントが同じであれば、断面係数が大きいほど発生応力は小さくなります。断面係数ははりの形状によって決まる係数です。
 
 たわみは中立面半径の大きさから計算されます。曲げモーメントが同じであれば、ヤング率と断面二次モーメントの積EI(はりの曲げ剛性)が大きいほどたわみにくいことを表しています。断面二次モーメントは断面係数と同じく、はりの断面形状で決まる係数です。図5から導かれる長方形断面、三角形断面の計算式を表1、2に示します。
 
表1 長方形断面の計算式
プラスチック
 
表2 三角形断面の計算式
プラスチック
 
 これらの計算式ははりの種類、断面形状によってそれぞれ異なった式となります(断面二次モーメントと断面係数ははりの種類とは無関係)。
 
 注意する必要があるのは、断面形状が中立軸に対して非対称の場合です。断面形状が長方形や円などの場合は、e1=e2であるため、σ1とσ2は同じ大きさとなります。三角形や台形など中立軸に対して非対称な形状の場合は、e1≠e2であるため、σ1とσ2も違う値となります。表2から分かるように、三角形の場合は底辺部分よりも頂点部分の方が、応力が2倍大きくなっています。
 
 ちなみに、ヤング率と発生応力が分かれば、フックの法則σ=...

1. はりの強度計算

 
 構造解析ソフトを使った強度解析は、設計者でも容易に実施できるようになって久しい。しかし、3Dモデルの作成や境界条件の設定などに時間がかかるため、まだ電卓並みというわけにはいかないのです。強度解析を効率よく実施するためには、ある程度の当たり付けをした後に構造解析ソフトを使うことが望ましいでしょう。当たり付けの有力な手段がはりの強度計算です。今回は、はりの強度計算について概要を解説します。
 

2. はりについて

 
 曲げ荷重を受ける細長い部材をはり(beam)と言います。垂直方向の圧縮荷重を受ける柱(column)と組み合わせることにより、建築や機械など様々な構造物で利用されています。プラスチック製品は一体成形されることが多いため、はりは使われていないと思うかもしれませんが、図1のように構造の一部をはりと考えることによって、はりの計算式を使った強度解析を行うことができます。
 
プラスチック図1 プラスチック製品の例
 
 はりは荷重の種類と支持方法の組み合わせによって多くの種類が存在します(図2、図3)。
 
プラスチック図2 荷重と支持方法の種類
 
プラスチック図3 はりの種類
 
 それぞれのはりごとに計算式が準備されており、断面特性、長さ、ヤング率(弾性率)を入力することにより、応力やたわみを求めることができます。
 
 

3. はりに発生する応力とたわみ

 
 はりに発生する応力とたわみを片持ちはりを例に説明します。片持ちはりの先端に荷重(集中荷重)をかけると、応力σとたわみwが発生します。
 
プラスチック図4 片持ちのはりに発生する応力
 
 はりには曲げモーメントが作用し、はりの上側に引張応力(σ1)、下側に圧縮応力(σ2)が発生します。応力は中立軸からの距離に比例して大きくなるため、はりの上下端で最大となります。
 
 曲げモーメントは、はりの長さ方向でグラフのように変化します。応力は曲げモーメントの大きさに比例するため、曲げモーメントの絶対値が最大となる根本部分で最も大きな応力が発生します(※1、※2)。根本部分の上端には引張応力の最大値、下端には圧縮応力の最大値が発生しますが、一般的にプラスチックは引張強度<圧縮強度であるため、上端が最も危険性の高い箇所であるといえる。また、最も大きなたわみが発生するのははりの先端部分となる(※2)。
 
 ※1 曲げモーメントは図4の向きを正と定義。反対向きに定義した場合は、根本部分の曲げモーメントは正となる。
 ※2 最大応力および最大たわみが発生する位置ははりの種類により異なる。
 
 はりに発生する応力は図5の計算式の組合せで求めることができます。
 
プラスチック図5 はりに発生する応力と中立面半径
 
 図5の計算式ははりの種類によらず同じです。曲げモーメントが同じであれば、断面係数が大きいほど発生応力は小さくなります。断面係数ははりの形状によって決まる係数です。
 
 たわみは中立面半径の大きさから計算されます。曲げモーメントが同じであれば、ヤング率と断面二次モーメントの積EI(はりの曲げ剛性)が大きいほどたわみにくいことを表しています。断面二次モーメントは断面係数と同じく、はりの断面形状で決まる係数です。図5から導かれる長方形断面、三角形断面の計算式を表1、2に示します。
 
表1 長方形断面の計算式
プラスチック
 
表2 三角形断面の計算式
プラスチック
 
 これらの計算式ははりの種類、断面形状によってそれぞれ異なった式となります(断面二次モーメントと断面係数ははりの種類とは無関係)。
 
 注意する必要があるのは、断面形状が中立軸に対して非対称の場合です。断面形状が長方形や円などの場合は、e1=e2であるため、σ1とσ2は同じ大きさとなります。三角形や台形など中立軸に対して非対称な形状の場合は、e1≠e2であるため、σ1とσ2も違う値となります。表2から分かるように、三角形の場合は底辺部分よりも頂点部分の方が、応力が2倍大きくなっています。
 
 ちなみに、ヤング率と発生応力が分かれば、フックの法則σ=Eεからひずみを簡単に計算することができます。ひずみはソルベントクラックの防止や、変形が弾性変形(応力と変形が比例関係にある)の範囲に入っているかどうかの確認などに活用することができます(※3)。
 
 ※3 一般にプラスチックが弾性変形の範囲に入ると考えてよいのは、ひずみが1%程度までといわれている。はりの強度計算は材料が弾性変形することを前提にしているため、1%を大きく超えた場合は精度が低くなる。
 
 次回は、実際の活用事例から、解説を続けます。
 
  

   続きを読むには・・・


この記事の著者

田口 宏之

中小製造業の製品設計の仕組み作りをお手伝いします!これからの時代、製品設計力強化が中小製造業の勝ち残る数少ない選択肢の一つです。

中小製造業の製品設計の仕組み作りをお手伝いします!これからの時代、製品設計力強化が中小製造業の勝ち残る数少ない選択肢の一つです。


「高分子・樹脂技術」の他のキーワード解説記事

もっと見る
フッ素樹脂塗料、選択のポイントとは(その1)フッ素樹脂とは

  1. フッ素樹脂塗料の科学的選択    フッ素樹脂塗料は、耐熱性、耐薬品性、耐候性、非粘着性、低摩擦等フッ素樹脂の持つ優れた...

  1. フッ素樹脂塗料の科学的選択    フッ素樹脂塗料は、耐熱性、耐薬品性、耐候性、非粘着性、低摩擦等フッ素樹脂の持つ優れた...


シリコーンフォーム/スポンジの成形方法と特徴(その2)

   前回のその1に続いて解説を続けます。 5、エマルジョンを利用する方法  シリコーンスポンジを得る手段として一般に有機発泡剤が用いられ...

   前回のその1に続いて解説を続けます。 5、エマルジョンを利用する方法  シリコーンスポンジを得る手段として一般に有機発泡剤が用いられ...


熱硬化性樹脂とは?

  高分子・樹脂・有機化学は、高分子、プラスチックに関連する総合的な固有分野であり、加工、材料、重合、分析、信頼性、応用と様々な技術分野に...

  高分子・樹脂・有機化学は、高分子、プラスチックに関連する総合的な固有分野であり、加工、材料、重合、分析、信頼性、応用と様々な技術分野に...


「高分子・樹脂技術」の活用事例

もっと見る
【SDGs取り組み事例】「服から服をつくる<sup>®</sup>」BRING Technology™で目指すグローバルな循環型社会の実現 株式会社JEPLAN

独自のプラットフォームでPET廃棄ゼロに臨む 株式会社JEPLAN(神奈川県川崎市) 目次 1.独自のケミカルリサイクル技術で「服から服」、「ボ...

独自のプラットフォームでPET廃棄ゼロに臨む 株式会社JEPLAN(神奈川県川崎市) 目次 1.独自のケミカルリサイクル技術で「服から服」、「ボ...


国際プラスチックフェアー(IPF JAPAN 2017)展示会レポート(その1)

  1.展示会概要  IPF(国際プラスチックフェア)は、3年に一度開催されるプラスチックの国際展示会で、IPF JAPAN 2017(IPF20...

  1.展示会概要  IPF(国際プラスチックフェア)は、3年に一度開催されるプラスチックの国際展示会で、IPF JAPAN 2017(IPF20...


2017 高機能プラスチック展レポート(その4)

◆2017年の高機能プラスチック展から  2017年4月、東京ビッグサイトで『高機能素材Week2017』がありましたが、この催物の一部として、高機...

◆2017年の高機能プラスチック展から  2017年4月、東京ビッグサイトで『高機能素材Week2017』がありましたが、この催物の一部として、高機...