プラスチックの応力緩和1 安全設計手法 (その5)

更新日

投稿日

 

【安全設計手法 連載目次】

 前回解説したクリープと同じく、プラスチックの粘弾性特性に起因する現象として応力緩和があります。プラスチック材料に意図的にひずみ(変形)を与えて、発生した反力を利用する製品では特に理解しておく必要性が高ので、今回は、この応力緩和について解説します。
 

1. 応力緩和とは

 
 クリープは材料に一定の応力が継続的に作用した時に、徐々に変形が進んでいく現象です。一方、ひずみ(変形)を一定にした時に、材料内部で発生する応力が時間の経過とともに小さくなっていく現象を応力緩和(relaxation)と言います。応力緩和は材料内部の応力変化であるため、クリープと違って外部から容易に観察することはできません。図1のように、ラケットのガットは応力緩和を実感できる製品の一つです。
 
R&D
図1. ラケットのガット
 
 ガットはナイロンなどの複合繊維で作られています。ガットにひずみ(変形/引張力)を与えると、ボールやシャトルを打つための反発力が得られます。ラケットに張った直後のガットは強く張っていますが、時間の経過とともに弛んできます。ガットが弛んでも見た目に大きな変化はなく、触ってみないと分からないでしょう。ガットの張りが弱くなった時、内部に発生している応力は大きく低下しています。これが応力緩和です。
 

2. プラスチックの粘弾性特性と応力緩和

 
 図2は応力緩和について、マックスウェルモデルと呼ばれる力学モデルで説明したものです。図3のグラフはその時の応力と時間の関係を表しています。
 
R&D
図2. マックスウェルモデルによる応力緩和の説明
 
R&D
図3. 応力と時間の関係
 
 ひずみを与えた直後はバネだけが伸び、応力σ0が発生します。バネがダッシュポットを引っ張るため、徐々にダッシュポットが伸びます。ひずみは一定であるため、ダッシュポットが伸びた分バネは縮みます。バネが縮むとダッシュポットを引っ張る力が小さくなり、応力低下のスピードは徐々に遅くなります。すなわちグラフの傾きが平行に近づいていきます。応力緩和のグラフは経過時間を対数にすると、図4のように直線状になります。
 
R&D
図4 応力と時間の関係(対数)
 
 クリープと同様に温度が高い方が、応力緩和のスピードは早くなります。その性質を利用...

 

【安全設計手法 連載目次】

 前回解説したクリープと同じく、プラスチックの粘弾性特性に起因する現象として応力緩和があります。プラスチック材料に意図的にひずみ(変形)を与えて、発生した反力を利用する製品では特に理解しておく必要性が高ので、今回は、この応力緩和について解説します。
 

1. 応力緩和とは

 
 クリープは材料に一定の応力が継続的に作用した時に、徐々に変形が進んでいく現象です。一方、ひずみ(変形)を一定にした時に、材料内部で発生する応力が時間の経過とともに小さくなっていく現象を応力緩和(relaxation)と言います。応力緩和は材料内部の応力変化であるため、クリープと違って外部から容易に観察することはできません。図1のように、ラケットのガットは応力緩和を実感できる製品の一つです。
 
R&D
図1. ラケットのガット
 
 ガットはナイロンなどの複合繊維で作られています。ガットにひずみ(変形/引張力)を与えると、ボールやシャトルを打つための反発力が得られます。ラケットに張った直後のガットは強く張っていますが、時間の経過とともに弛んできます。ガットが弛んでも見た目に大きな変化はなく、触ってみないと分からないでしょう。ガットの張りが弱くなった時、内部に発生している応力は大きく低下しています。これが応力緩和です。
 

2. プラスチックの粘弾性特性と応力緩和

 
 図2は応力緩和について、マックスウェルモデルと呼ばれる力学モデルで説明したものです。図3のグラフはその時の応力と時間の関係を表しています。
 
R&D
図2. マックスウェルモデルによる応力緩和の説明
 
R&D
図3. 応力と時間の関係
 
 ひずみを与えた直後はバネだけが伸び、応力σ0が発生します。バネがダッシュポットを引っ張るため、徐々にダッシュポットが伸びます。ひずみは一定であるため、ダッシュポットが伸びた分バネは縮みます。バネが縮むとダッシュポットを引っ張る力が小さくなり、応力低下のスピードは徐々に遅くなります。すなわちグラフの傾きが平行に近づいていきます。応力緩和のグラフは経過時間を対数にすると、図4のように直線状になります。
 
R&D
図4 応力と時間の関係(対数)
 
 クリープと同様に温度が高い方が、応力緩和のスピードは早くなります。その性質を利用したものがアニールです。成形時に生じた残留応力を取り除くアニールは、プラスチックが高温で素早く応力緩和ができることを利用したものです。
 
 次回は、応力緩和が問題になる製品について解説します。
 
【参考文献】
新保實(著)共立出版 『プラスチックの粘弾性特性とその利用 ―成形不良対策法/発泡制御法』
有方広洋 (著) 日刊工業新聞社 『プラスチック成形加工基礎と実務―射出成形から二次加工まで』
 
 

   続きを読むには・・・


この記事の著者

田口 宏之

中小製造業の製品設計の仕組み作りをお手伝いします!これからの時代、製品設計力強化が中小製造業の勝ち残る数少ない選択肢の一つです。

中小製造業の製品設計の仕組み作りをお手伝いします!これからの時代、製品設計力強化が中小製造業の勝ち残る数少ない選択肢の一つです。


「安全工学一般」の他のキーワード解説記事

もっと見る
最終回 機能安全(その5)

  【安全設計手法 連載目次】 1. 機能安全(その1)機能安全とは何か 2. 機能安全(その2)日本における安全設計 3. 機能安...

  【安全設計手法 連載目次】 1. 機能安全(その1)機能安全とは何か 2. 機能安全(その2)日本における安全設計 3. 機能安...


リスクアセスメントの必要性 リスクアセスメント(その1)

 安全工学では、製品が「安全」(=許容不可能なリスクがないこと)であるかどうかを事前に評価するプロセスがリスクアセスメントです。製品事故を起こす前に対策を...

 安全工学では、製品が「安全」(=許容不可能なリスクがないこと)であるかどうかを事前に評価するプロセスがリスクアセスメントです。製品事故を起こす前に対策を...


静電気事故防止対策 ~ 人体除電の基礎

♦ 過信禁物!~ 基礎から学ぶ人体除電    人体除電の基礎は靴と床です。つまり、 静電気帯電防止の作業靴(J...

♦ 過信禁物!~ 基礎から学ぶ人体除電    人体除電の基礎は靴と床です。つまり、 静電気帯電防止の作業靴(J...


「安全工学一般」の活用事例

もっと見る
製品安全で急浮上の課題『サイレントチェンジ』の事例

 ◆ サイレントチェンジ多発の背景  2017年10月経産省・製品安全課から次のような文章が公開されました。「製造事業者は電気用品安全やRoHS規制等の...

 ◆ サイレントチェンジ多発の背景  2017年10月経産省・製品安全課から次のような文章が公開されました。「製造事業者は電気用品安全やRoHS規制等の...


化学物質による事故・汚染、化学物質の危険性、有害性、取扱い事例

 私の所属している化学物質管理士協会が行う化学物質管理試験科目の一つである化学物質による事故・汚染、化学物質の危険性、有害性、取扱い方について取り上げ...

 私の所属している化学物質管理士協会が行う化学物質管理試験科目の一つである化学物質による事故・汚染、化学物質の危険性、有害性、取扱い方について取り上げ...


静電気事故に学ぶリスクコミュニケーション

  ♦リスクコミュニケーションの目的と必要性  化学工場の事故の大半は静電気爆発・静電気着火によるものです。各社静電気事故防...

  ♦リスクコミュニケーションの目的と必要性  化学工場の事故の大半は静電気爆発・静電気着火によるものです。各社静電気事故防...