バイオリファイナリーと次世代バイオプラスチック

セミナー趣旨

 昨今の地球環境・資源・廃棄物問題の背景下、再生可能資源としてのバイオマスを原料とするバイオプラスチックの開発が進められる中でも、近年は食料問題と競合しない非可食バイオマスを原料とするバイオプラスチックの開発が注目されている。世界的には木質・草本系バイオマス由来パラキシレンを用いる 100%バイオベースPETの開発と実用化が進展しつつあるが、最近日本においてもバイオマスナフサのクラッキング法によるバイオポリオレフィンの開発や、木材パルプの酵素分解により得られるセルロース系糖質の乳酸発酵からポリ乳酸を製造する大手製紙メーカーの先進的な取り組み等が報道されている。
 本講では従来法に加えて、これら非可食バイオマス資源を原料とする新しいバイオリファイナリーの現状と課題、将来展望を交えながら、近年新設・増産計画が相次ぐポリ乳酸その他の次世代バイオプラスチックの素材・技術・市場開発の最前線を踏査する。

受講対象・レベル

 生分解性プラスチックの基礎から最先端技術の取得を目指す初級~中級技術者
 生分解性プラスチックを用いての成形加工・加工品に興味のある方

習得できる知識

 ◇ 地球環境保全と持続的な資源循環型社会に向けての業界や法規制動向
 ◇ 非可食バイオベース・モノマーや化学品の最新開発動向と技術的課題
 ◇ 新規バイオプラスチックの開発動向と基本特性、用途・製品・市場開発動向

セミナープログラム

1. 地球環境・資源・廃棄物問題の抜本的解決のために
 1-1. 既存石油系合成高分子化合物が内包する基本的問題点
  1) 原料枯渇問題…50年後に枯渇、そこに至る迄に需給関係から価格高騰必至
  2) 地球温暖化問題…焼却などに伴う温暖化ガスの増大
  3) 廃棄物問題…海洋プラスチック汚染問題など
 1-2. 海洋プラスチック汚染の実態と生分解性プラスチックの役割
  1) 海洋プラ濃度の経年変化(累積増加)曲線
  2) 海洋汚染問題に対する短期的視点と長期的(グローバルな)視点
  3) 海洋自然生態系が許容し得る分解速度、ポジティブ・コントロールとは?
 1-3. バイオプラスチックの識別表示制度と環境負荷低減効果
  1) 日本バイオプラスチック協会(JBPA)識別表示制度(2021年改定)
   ① 生分解性プラ
   ② 生分解性バイオマスプラ
   ③ バイオマスプラ
  2) カーボン・フットプリント…LCAによる環境負荷の客観的・定量的評価
 1-4. 世界の法規制と業界動向
  
2. バイオベース・プラットホームケミカルとバイオリファイナリー最前線
 2-1. バイオマス資源
  1) 可食バイオマス…デンプン(トウモロコシ)や廃糖蜜(サトウキビ)
  2) 非可食バイオマス…リグノセルロース(茎や葉、雑草、稲わら、廃木材)、ヒマシ油
 2-2. 非可食バイオマスのバイオリファイナリーとプラットフォームケミカル
  1) セルロース系糖質調製法とそこから誘導される化学品
   ① 分解酵素(セルラーゼ)法…酵母や乳酸菌による発酵生産(エタノール、乳酸)
   ② 超臨界加水分解法…Plantrose®/Renmatix社の触媒化学的バイオリフォーミング(パラキシレン)
   ・酵素生産、糖化、発酵の生化学的過程をすべて統合化した CBP(Consolidated Bioprocessing)とは?
  2) バイオマスナフサ調製法と誘導化学品…廃植物油の高温熱分解によるバイオマスナフサのクラッキング(エチレン等)
 2-3. バイオベース・モノマー又は中間体
  1) C2…エチレングリコール(EG)
  2) C3…グリセリン、乳酸、1.3-プロパンジオール(PDO)、3-ヒドロキシプロピオン酸(3-HP)、アクリル酸
  3) C4…コハク酸、1,4-ブタンジオール(BDO)、γ-アミノ酪酸(GABA)
  4) C6…ソルビトール、イソソルバイド、フランジカルボン酸(FDCA)、アジピン酸
   ・北海道大学が従来法の限界を突破する画期的な高効率FDCA新規化学合成法を開発
  5) C8…p-キシレン(PX)
  6) C10…セバシン酸
  7) C18…リシノール酸
  
3. バイオプラスチックの最新動向
 3-1. バイオポリエチレン(bio-PE)
 3-2. バイオポリプロピレン(bio-PP)
 3-3. バイオポリエステル(bio-PES)
  1) 生分解性バイオポリエステル
   ① ポリ乳酸(PLA)…世界的に新設・増産計画が相次ぐ(2024年、約50万トン/年)
   ・生分解性と長期耐久性構造材料の両面展開が可能な唯一のバイオプラスチック
   ・非可食木材パルプの酵素分解からPLAを生産する技術開発(王子HD)
   ② ポリブチレンアジペート・テレフタレート(PBAT)
   ③ ポリブチレンサクシネート系(PBS, PBSA)
   ④ 微生物産生ポリエステル(PHBV, PHBH)、デンプン系、その他
   ・微生物産生ポリエステルが過去40年間、世界中の多くの企業が参入と撤退を繰り返し、未だ本格的に工業化されない核心的理由とは?
  2) 非生分解性バイオポリエステル
   ① バイオポリエチレンテレフタレート(bio-PET)
   ・従来のイソブタノール法(Gevo)に代わるPlantrose®/Renmatixを用いたVirentのBioReformingプロセスによるバイオ系パラキシレンの生産が主流に!?
   ② ポリトリメチレンテレフタレート(PTT)
   ③ ポリエチレンフラノエート(PEF)
   ・植物由来フランジカルボン酸(FDCA)から成るバイオポリエステル、PET対比で高いガスバリア性と耐熱性
 3-4. バイオポリアミド(bio-PA)
  1) ポリアミド11
  ・ヒマシ油(リシノール酸トリグリセリド)の熱分解による化学変換により誘導される、最も歴史の古い古典的なバイオポリアミド
  2) ポリアミド610、ポリアミド56
  3) ポリアミド10T
  ・ヒマシ油由来 1,10デカンジアミンとテレフタル酸の重合体で、超高耐熱性や低吸水率、耐薬品性、耐摩耗性、電気特性に優れた次世代スーパーエンプラ
  4) ポリアミド4
  ・ポリアミドの中で唯一の生分解性プラスチック
 3-5. バイオポリカーボネート(bio-PC)
  ・植物由来複素環式ジオールのイソソルバイドから成るバイオポリカーボネートで、光学特性や表面硬度、耐光性等に優れた新規エンジニアリング・プラスチック
 3-6. バイオポリウレタン(bio-PU)
  
4. 質疑応答


※ 適宜休憩が入ります。

セミナー講師

望月 政嗣 氏
元 京都工芸繊維大学 特任教授、工学博士(京都大学)、高分子学会 フェロー

セミナー受講料

49,500円(税込)  

* 資料付
*メルマガ登録者44,000円(税込)
*アカデミック価格26,400円(税込)

★メルマガ会員特典
2名以上同時申込で申込者全員メルマガ会員登録をしていただいた場合、
1名あたりの参加費がメルマガ会員価格の半額となります。

★ アカデミック価格
学校教育法にて規定された国、地方公共団体、および学校法人格を有する大学、
大学院の教員、学生に限ります。申込みフォームに所属大学・大学院を記入のうえ、
備考欄に「アカデミック価格希望」と記入してください。

受講について

  • 本セミナーはビデオ会議ツール「Zoom」を使ったライブ配信セミナーとなります。
    お申し込み前に、下記リンクから視聴環境をご確認ください。
     → https://zoom.us/test
  • 当日はリアルタイムで講師へのご質問も可能です。
  • タブレットやスマートフォンでも視聴できます。
  • お手元のPC等にカメラ、マイク等がなくてもご視聴いただけます。この場合、音声での質問はできませんが、チャット機能、Q&A機能はご利用いただけます。
  • ただし、セミナー中の質問形式や講師との個別のやり取りは講師の判断によります。ご了承ください。
  • 「Zoom」についてはこちらをご参照ください。

■ お申し込み後の流れ

  • 開催前日までに、ウェビナー事前登録用のメールをお送りいたします。お手数ですがお名前とメールアドレスのご登録をお願いいたします。
  • 事前登録完了後、ウェビナー参加用URLをお送りいたします。
  • セミナー開催日時に、参加用URLよりログインいただき、ご視聴ください。
  • 講師に了解を得た場合には資料をPDFで配布いたしますが、参加者のみのご利用に限定いたします。他の方への転送、WEBへの掲載などは固く禁じます。
  • 資料を冊子で配布する場合は、事前にご登録のご住所に発送いたします。開催日時に間に合わない場合には、後日お送りするなどの方法で対応いたします。

※セミナーに申し込むにはものづくりドットコム会員登録が必要です

開催日時


10:30

受講料

49,500円(税込)/人

※本文中に提示された主催者の割引は申込後に適用されます

※銀行振込

開催場所

全国

主催者

キーワード

環境負荷抑制技術   高分子・樹脂材料

※セミナーに申し込むにはものづくりドットコム会員登録が必要です

開催日時


10:30

受講料

49,500円(税込)/人

※本文中に提示された主催者の割引は申込後に適用されます

※銀行振込

開催場所

全国

主催者

キーワード

環境負荷抑制技術   高分子・樹脂材料

関連記事

もっと見る